Lynden Garden MESP Erosion Hazard and Mitigation Assessment

299 Lynden Road, City of Brantford

Prepared for: Natalie Shurigina Sorbara Group of Companies 3700 Steeles Avenue West, Suite 800 Woodbridge, ON L4L 8M9

December 5, 2023 PN22045

Geomorphology Earth Science Observations

Report Prepared by:	GEO Morphix Ltd. 36 Main Street North PO Box 205 Campbellville, ON LOP 1B0
Report Title:	Lynden Garden MESP Erosion Hazard and Mitigation Assessment 299 Lynden Road, City of Brantford
Project Number:	PN22045
Status:	Draft
Version:	2.0
Submission Date:	December 5, 2023
Prepared by:	Jan Franssen, Ph.D., Karine Smith, M.Sc.
Approved by:	Paul Villard, Ph.D., P.Geo., CAN-CISEC, EP, CERP

Table of Contents

1	Intro	duction4
2	Back	ground Review4
	2.1	North Brantford and Tutela Heights Subwatershed Study4
	2.2	Physiography and Geology5
3	Site H	listory6
4	Wate	rcourse Characteristics6
	4.1	Reach Delineation6
	4.2	General Reach Observations8
	4.3	Rapid Field Assessments11
	4.4	Detailed Geomorphological Assessment12
5	Erosi	on Threshold Analysis13
	5.1	Methodology14
	5.2	Results14
6	Post-	to Pre-Development Erosion Exceedance Analysis16
	6.1	Methods
	6.2	Results
7	Erosi	on Hazard Assessment
8		nary21
9	Refer	ences

List of Tables

Table 1: Reach delineation summary	8
Table 2: General channel characteristics by reach	9
Table 3: Reach classifications summary by reach	12
Table 4: Detailed assessment results for Reaches SC-A-5 and TFC4-1	13
Table 5: Erosion Thresholds for Reach SC-5-A and TFC4-1	15
Table 6: Site-level threshold release rates for the proposed developments	18
Table 7: Results of the post- to pre-development erosion exceedance analysis	19

Appendices

	Appendix A
B Historical Aerial Photographs	Appendix B
2Erosion Hazard Delineatior	Appendix C
9 Photographic Record	Appendix D
Field Observations	Appendix E
Detailed Assessments	Appendix F
G Hydrographs	Appendix G

1 Introduction

GEO Morphix Ltd. was retained to complete a fluvial geomorphological characterization and erosion mitigation assessment in support of proposed stormwater management (SWM) facilities at the development at 299 Lynden Road in the City of Brantford, Ontario. The proposed development site, hereon referred to as the 'subject lands', is an area of approximately 77.7 ha, bounded by Lynden Road to the south, a residential neighborhood to the east, a forested valley to the north, and a Canadian National Rail (CNR) line to the east. Silver Creek a tributary of Fairchild Creek flows west to east, along the southern boundary of the property. Two smaller tributaries of Garden Avenue Drain extend south from the site boundary at Lynden Road. These watercourses constitute the zone of potential impact associated with the proposed SWM facilities and are consequently the subject of the fluvial assessments. To support the development application for the site, an erosion hazard assessment and delineation of constraints associated with the subject watercourse was completed to inform future development limits to the north. In addition, an erosion threshold and mitigation assessment was completed in support of the two proposed stormwater management facilities that will service drainage from the subject lands.

The following activities were completed to characterize existing conditions, delineate limits of the erosion hazard, and complete an erosion mitigation assessment in support of the proposed stormwater management strategy:

- Review topographic and geologic maps and previously completed reporting for the site
- Complete a desktop analysis which includes a historical assessment using aerial photographs to identify changes to the system due to land use and past channel modifications
- Delineate watercourse reaches through a desktop exercise
- Conduct rapid field assessments to document the channel conditions, reach-scale observations of channel substrate, flow behaviour, geomorphological units, and locations of any valley wall contact, and areas of active erosion within the receiving watercourses
- Obtain and review historical and recent aerial photographs to determine the limits of the meander belt width associated with Silver Creek
- Complete a detailed geomorphological field assessment to determine an erosion threshold or flow target for stormwater management design
- Define an erosion threshold for the receiving watercourses using an in-house model that predicts the discharge at which the dominant channel material will become entrained
- Perform continuous erosion exceedance modelling of existing and proposed conditions in support of the development of an effective erosion mitigation scenario

2 Background Review

2.1 North Brantford and Tutela Heights Subwatershed Study

The North Brantford and Tutela Heights Subwatershed Study (SWS) was reviewed to help inform the erosion hazard and mitigation assessments. The purpose of the aforementioned SWS is to facilitate future development, and the associated planning, engineering, and environmental studies, within the Expanded Urban Settlement area of the Boundary Adjustment Lands in the City of Brantford. The SWS characterizes existing watercourses, drainage features, natural heritage systems, and groundwater resources within the study area. Potential impacts to these systems are explored and high-level management frameworks are provided for appropriate mitigation. Of relevance to the 299 Lynden Road development, the North Brantford and Tutela Heights SWS characterized site drainage patterns and surficial geology, and provided information on several stream reaches of Silver Creek and the Garden Avenue tributary of Fairchild Creek. Erosion thresholds were determined for multiple channels within the primary SWS study area but were not completed for any of the watercourses within the zone-of-impact associated with the 299 Lynden Road Development.

Within the SWS, the surficial geology of tablelands in subject lands were characterized solely as clays. A drainage divide was identified within the subject lands, with the northern portion draining to Silver Creek and the southern portion draining to the Garden Ave tributary. The Garden Ave tributary was identified as a likely-ephemeral system with little to no flow observed during the SWS field assessments. The feature eventually outlets to Fairchild Creek south of Highway 403.

Silver Creek flows through a steep, incised valley to the immediate north of the subject lands, with sands and modern alluvial deposits identified on the valley floor and clays on the valley walls. The valley floor is predominantly wetland/marsh-type land cover and is characterized as an NHS with a 30 m buffer. Multiple observations of exposed parent till material were noted upstream of the subject lands, along the extent of Silver Creek assessed for the SWS. Much of the Silver Creek drainage originates from urban residential lands with minimal SWM controls, which is reflected by the relatively high debris lines that indicate high-flow conditions. Several reaches assessed in the residential areas have straightened channels, but the stream is largely naturalized downstream of these residential areas. Degradation and widening were identified as the dominant channel-forming processes within Silver Creek, with vegetated slumps frequently observed.

The Braneida Stormwater Management Facility Retrofit and Downstream Channel Remediation Municipal Class Environmental Assessment completed by Ecosystem Recovery Inc. (2021) was also reviewed to help inform erosion mitigation for the tributary of Fairchild Creek located south of the subject lands. The aforementioned report includes geomorphic assessments for delineated reaches within the tributary, and an erosion threshold analysis for the most sensitive reach. The assessed area of the tributary of Fairchild Creek within the Braneida Stormwater Management report included reaches located southwest of the subject lands. The tributary is located within the Norfolk Sand Plain physiographic region, and surficial geology consists of modern alluvium and fine-textured glaciolacustrine deposits, namely clay (OGS 2010). The tributary flows through predominantly agricultural land, with undercutting, incision and encroachment observed throughout the channel. The tributary is classified as low-gradient and unconfined, with relatively straight or slightly meandering planform. An erosion threshold of 0.27 m³/s was determined for the most sensitive reach within the study area, based on the critical velocity required for mobilization of uniform clay materials (Fischenich 2001).

2.2 Physiography and Geology

Channel morphodynamics are largely governed by the flow regime and the availability and type of sediments (i.e., surficial geology) within the stream corridor. These factors are explored as they not only offer insight into existing conditions, but also potential changes that could be expected in the future as they relate to a proposed activity. Understanding local surficial geology is important for determining an appropriate erosion hazard limit, as the stability of the channel banks and valley slope is dependent, at least in part, on the composition of soils and underlying parent materials (MNR, 2002).

The subject lands are completely located within the Sand Plains of the Norfolk Sand physiographic region with the sediments from deltaic deposits associated with glacial Lakes Whittlesey and Warren (Chapman and Putnam, 1984). Published mapping indicates that the local surficial geology along the Silver Creek valley consists of modern alluvial deposits of clay, silt, sand, and gravel

(OGS, 2010). The tableland area within the subject lands contains fine-textured glaciolacustrine deposits of silt and clay, with smaller proportions of sand and gravel. This is consistent with field observations of exposed till which consisted of a stratified clay. Depositional facies of these deposits are characterized as ranging from massive (structureless) to well-laminated.

A supplementary geotechnical investigation was completed by Terrapex Environmental Ltd. (2022). Nine boreholes were drilled throughout the subject lands, from which soil samples were recovered and analyzed in lab. The analyses identified a 150 to 250 mm layer of topsoil throughout the site. The underlying native soils were characterized as predominantly clayey silt with occasional silty clay layers. Trace amounts of sand were observed within several borehole samples.

3 Site History

A series of historical aerial photographs were reviewed to determine changes to the channel and surrounding land use and land cover. This information, in part, provides an understanding of the historical factors that have contributed to current channel morphodynamics and potentially how past changes may affect channel planform in the future.

Aerial photographs for the years 1945, 1964, 1972 and 1982 from the National Air Photo Library, and digital orthoimages for the years 2003, 2013, 2016, 2018, and 2019 from Google Earth Pro were reviewed. Select imagery is provided in **Appendix B** for reference.

In 1945, the subject lands and surrounding area was dominated by agricultural and rural land use and land cover. The railway which bisects the subject lands had been previously constructed prior to 1945. Riparian vegetation is limited, and woodlots within the subject lands are fragmented. Where visible, Silver Creek exhibits an irregular meandering planform. Between 1945 and 1972, there were limited changes in land use and riparian vegetation. Multiple remnant beds are visible in the 1964 aerial image, indicating the channel had historically migrated within its valley. A section of straightened channel is visible, indicating the channel was straightened prior to 1964.

By 1982, land use had changed upstream of Silver Creek with increased industrial and housing development. Active construction and completed homes along what is now Brantwood Park Road are visible. However, the surrounding lands remained largely for agricultural and rural uses. There are little to no distinguishable changes to the channel planform between 1964 and 1982.

Housing and industrial development was largely completed between 1984 and 2003. Riparian vegetation within the study site established and matured. Through to 2019, little to no changes were noted to land use and land cover, and to the channel planform.

4 Watercourse Characteristics

4.1 Reach Delineation

Reaches are homogeneous segments of channel used in geomorphological investigations. Reaches are studied semi-independently as each is expected to function in a manner that is at least slightly different from adjoining reaches. This method allows for a meaningful characterization of a watercourse as the aggregate of reaches, or an understanding of a particular reach, for example, as it relates to a proposed activity.

Reaches are typically delineated based on changes in the following:

• Channel planform

- - Channel gradient
 - Physiography
 - Land cover (land use or vegetation)
 - Channel confluences (tributary junctions)
 - Soil type and surficial geology
 - Historical channel modifications

This follows scientifically defensible methodology proposed by Montgomery and Buffington (1997), Richards *et al.* (1997), Brierley and Fryirs (2005), and the Toronto and Region Conservation Authority (2004). Reach delineation for Silver Creek was completed through a desktop assessment and then field-verified. Seven (7) reaches were delineated within the subject lands. Reach delineation was also completed for the tributary of Fairchild Creek to the south, to provide context on all watercourses within the zone of impact. A summary of the reach delineation results is outlined in **Table 1**. Field verification was not completed for the tributary of Fairchild Creek as part of this study; therefore, defining characteristics are not described. The study area and associated reach delineation is shown in **Appendix A**, for reference.

Table 1: Reach delineation summary

Reach Name	Approx. Channel Length (m)	Approx. Gradient* (%)	Defining Characteristics
SC-A-1	288	0.35	 Incised channel in ravine-like setting with exposed till and frequent valley wall contact Moderate gradient with low-sinuosity planform Developed riffle-pool sequences
SC-A-2	456	0.33	 Moderate gradient and meandering planform Frequent valley wall contact and erosion along both banks with till exposure Cantilever bank failure common, exposed roots and undercutting along banks
SC-A-3	248	0.14	 Low gradient with sinuous planform and pool-morphology dominant Exposed sculpted till prevalent Medial bars and sand deposits common
SC-A-4	305	0.53	 Moderate gradient with recovering planform from historical straightening Run-morphology dominant Slumping banks common
SC-A-5	462	0.12	Low gradient with meandering planformDeveloped riffle-pool sequences
SC-A-6	482	0.25	 Low gradient with meandering planform Narrow riparian corridor with agricultural activity disturbance Pool-morphology dominant
TFC3	441	0.56	n/a
TFC4	82	0.21	n/a
TFC4-1	137	0.55	n/a
TFC5	274	0.39	n/a
TFC6	430	0.33	n/a
TFC7-1	251	0.91	n/a
TFC7-2-1	121	0.77	n/a
TFC7-1-1	194	1.13	n/a
TFC7-1-2	581	0.61	n/a

* Estimated from provincial LiDAR data (LIO, 2023)

4.2 General Reach Observations

Field investigations for Silver Creek were completed on July 7, 2022, and included the following:

- - Habitat sketch maps based on Newson and Newson (2000) outlining channel substrate, flow patterns, geomorphological units (e.g., riffle, run, pool), and riparian vegetation for the extent of each reach assessed
 - Descriptions of riparian conditions
 - Estimates of bankfull channel dimensions
 - Bed and bank material composition and structure
 - Observations of erosion, scour or deposition
 - Collection of photographs to document the watercourses, riparian areas and/or valley, surrounding land use, and channel disturbances such as crossing structures

These observations and measurements are summarized below. The field descriptions are supplemented and supported with representative photographs, which are included in **Appendix D**. Field sheets, including those completed for rapid geomorphic assessments, are provided in **Appendix E**. General channel characteristics for each reach are summarized below in **Table 2**.

Reach Name	Avg. Bankfull Width (m)	Avg. Bankfull Depth (m)	Substrate Conditions	Dominant Riparian Conditions	Notes
SC-A-1	4.35	1.12	Clay/silt to cobble	Continuous mature trees	Exposed till and sand deposits common, abundant valley wall contact (VWC), exposed roots and leaning trees observed
SC-A-2	3.67	0.87	Clay/silt to gravel	Fragmented, sub- mature, mixed trees and shrubs	Exposed till frequently observed, large undercuts and exposed roots common, VWC along both banks observed
SC-A-3	3.87	0.98	Clay/silt to cobble	Fragmented, sub- mature, mixed trees and shrubs, grasses	Occasional exposed till observed, narrower channel, bank slumping common, grassier immediate riparian conditions
SC-A-4	3.99	1.07	Clay/silt and sand	Fragmented, sub- mature, mixed trees and shrubs, grasses	Limited riparian buffer and overhead cover, exposed till frequently observed, limited riffle- pool development, run-morphology dominated
SC-A-5	5.13	1.23	Clay/silt to cobble	Fragmented, sub- mature, mixed herbaceous vegetation and shrubs	Silt deposits common within pools, exposed till observed, steep and exposed/eroded banks common throughout, frequent VWC observed
SC-A-6	5.15	1.32	Clay/silt to cobble	Fragmented mature trees	Past modifications to channel and substrate observed (farm crossing), narrow riparian corridor, basal scour common throughout, occasional VWC, substantial siltation common
P012	0.60	0.18	Clay/silt and sand	Fragmented, sub- mature, mixed trees and shrubs	Poorly defined swale-type feature flows into/through forested wetland area, dry during time of assessment

Table 2: General channel characteristics by reach

Reach SC-A-1 along Silver Creek is approximately 300 m in length. The channel was observed to be a highly entrenched channel within confined valley settings. The channel exhibits a low-sinuosity planform, a moderate gradient, making frequent contact with the valley wall. The riparian vegetation is fragmented and narrow, and mainly consists of trees and herbaceous shrubs. The substrate of the valley walls consist of an exposed clayey till. The bed substrate of the channel consists of a layer of small cobbles which sit loosely on the sub pavement, the same material as the eroded valley walls. The banks of the reach are generally unstable, with multiple instances of slumping observed. The reach exhibits highly developed riffle-pool sequences, likely due to the mobile bedload and the frequency of competent flows within this confined valley setting.

Reach SC-A-2 is approximately 450 long and is similar to **Reach SC-A-1**. The channel is highly entrenched within a confined valley setting. The channel exhibits a meandering planform and makes frequent valley wall contact, which has eroded and exposed the clayey till subpavement. Both banks of the reach are unstable and erosion is present along both banks. Cantilever bank failure is common here. Geomorphological structures in this reach are well developed, such as pool-riffle sequences and point bars. The bed substrate consists of a cobble material which sits on the clayey-till subpavement, evidence of a highly entrenched system which continues to incise downwards. The reach exhibits evidence of aggradation, degradation, and widening with medial bars, cut face of bar forms, and fallen trees all observed.

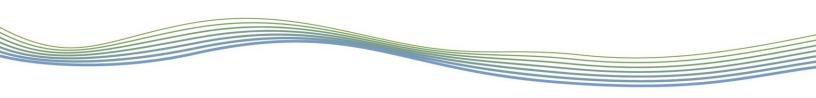
Reach SC-A-3 is an approximately 250 m long and is defined as a moderately entrenched channel within a confined valley setting. The channel exhibits a sinuous planform with a low gradient. There is evidence of aggradation as the channel is mainly pool dominated and the pools are highly silted. Sandy sediment streaks, medial bars, and non-accreted point bars were observed. The banks are highly unstable with frequent signs of bank erosion such as slumping, falling, undercutting, sloughing, sliding, and slab failure. The banks are mainly composed of layer of well-vegetated topsoil which sits on top a clayey sculpted till material. This clayey sculpted till comprises the bed subpavement as well. Riparian vegetation along the reach offers fragmented coverage. Dominant riparian vegetation is characterized by grasses and trees.

Reach SC-A-4 is approximately 300 m in length and is defined as a highly entrenched channel within a confined valley setting. This channel was historically straightened and the current planform exhibits a recovering planform pattern. The channel exhibits a moderate gradient with run-dominated morphology. Sandy streak-deposits and medial bars consisting of gravel and sand were observed. The banks of this reach are highly unstable with undercuts up to 0.5 m in depth. Slumped and falling banks were observed in the reach, facilitating vegetation growth within, and narrowing the wetted perimeter of the low-flow channel. The height of the valley is lower here, with more-gentle bank angles, compared to the upstream reaches assessed. The dominant riparian vegetation cover consists of grasses and herbaceous shrubs. A number of large woody debris jams have created areas of localized scour and widening.

Reach SC-A-5 is approximately 470 m in length and is defined as a moderate gradient reach which is highly sensitive and deemed to be in adjustment. The channel exhibits a meandering planform within a confined valley and has developed distinguishable pool-riffle sequences. Siltation is common throughout the reach. The banks of this reach are highly unstable with fracture lines and slumping banks observed. Channel undercuts measured were up to 1.1 m in width and large woody debris jams were observed along the reach. The channel had worn into the underlying clayey till deposit, as observed throughout the segment of Silver Creek which was assessed. The water quality of the channel was turbid and opaque indicating possible sedimentation or aggradational issues. The pool-riffle form was observed to be evolving into a low bed relief form upon reaching the rail crossing at the downstream extent. Pool depths were around 0.8 m during the time of assessment.

Reach SC-A-6 is approximately 480 m in length and is defined as a low-gradient reach which originates at the culvert which conveys the channel beneath a CN railway. The culvert structure consists of a concrete headwall and apron, with gabion basket wingwalls. The gabion basket wingwalls are in poor condition and emptying. The reach is a partially confined valley reach with a narrow riparian corridor. The channel exhibits a meandering planform with a low gradient. A tractor crossing has disturbed the channel at this location. The reach is defined by being highly silted, especially in the pools. At the time of field observation, water was highly turbid and opaque with sediments and the reach is pool morphology dominant. Pools are up to 1.5 m in depth and there is woody debris within the channel and cutbanks with evidence of recent treefall. The banks along this reach are unstable but well-vegetated.

The channel stemming from **POI2** is a best characterized as a vegetated swale feature with poorly defined banks. No flow was observed at the time of assessment. Where the channel flows alongside the railway, the bed substrate of this feature consists of rip-rap and stone.


4.3 Rapid Field Assessments

Channel stability and susceptibility to erosion were objectively assessed through the application of the Ontario Ministry of the Environment (MOE; 2003) Rapid Geomorphic Assessment (RGA) technique. The RGA evaluates degradation, aggradation, widening, and planimetric form adjustment at the reach scale. The end result of the RGA is to produce a score, or stability index, which evaluates the degree to which a stream has departed from its equilibrium condition. A stream with a score of less than 0.20 is defined as in regime, indicating minimal changes to its shape or processes over time. A score of 0.21 to 0.40 indicates that a stream is in transition or stress and is experiencing major changes to process and form outside the natural range of variability. A score of greater than 0.41 indicates that a stream is in extreme adjustment, exhibiting a new stream type, or is in the process of adjusting to a new equilibrium (MOE, 2003; VANR, 2007).

The Rapid Stream Assessment Technique (RSAT) was also employed to provide a broader view of the system and consider the ecological functioning of the watercourse (Galli, 1996). Observations were made of channel stability, channel scouring or sediment deposition, instream and riparian habitats, and water quality. The RSAT score ranks the channel as maintaining a poor (<13), fair (13-24), good (25-34), or excellent (35-42) degree of stream health.

The reaches were also classified according to the Downs (1995) Model of Channel Evolution and the River Styles Framework (Brierley and Fryirs, 2005). The Downs (1995) model describes successional stages of a channel as a result of a perturbation, namely hydromodification. Understanding the current stage of the system is beneficial as this allows one to predict how the channel will continue to evolve or respond to an alteration to the fluvial system. The River Styles Framework provides a geomorphological approach to examining river character, behaviour, condition, and recovery potential.

The results of the reach classifications are summarized in **Table 3.** Rapid level assessments were not applied to reaches characterized as either swales or wetland features, as this assessment technique is not appropriate for those feature types. Silver Creek reaches, including **Reaches SC-A-1**, **SC-A-2**, **SC-A-3**, **SC-A-4**, and **SC-A-5**, scored relatively high RGA scores with most reaches classified as 'In Adjustment'. The dominant process in almost all Silver Creek reaches is widening with minor aggradation. **Reaches SC-A-2**, **SC-A-3**, **SC-A-4**, and **SC-A-5**, were identified through the RGA as the most erosion-sensitive reaches throughout the extent assessed. The RSAT scores along Silver Creek ranged from 'fair' to 'good'.

Reach Name	RGA Dominant Score Process				Downs Model Classification	
SC-A-1	0.36	Widening	24 8 – Mixed load meandering		e - enlarging	
SC-A-2	0.48	Widening	ening 23 8 – Mixed load meandering		e - enlarging	
SC-A-3	0.48	Widening	Videning 22 8 – Mixed load meandering		e - enlarging	
SC-A-4	0.48	3 Widening 21 7 – Mixed load low- sinuosity meandering		7 – Mixed load low- sinuosity meandering	R - recovering	
SC-A-5	0.47	Widening/ Aggradation	5,))		C - compound	
SC-A-6	0.45 Widening 24 8 – Mixed load C -		C - compound			
POI-2	n/a – swale feature					

Table 3: Reach classifications summary by reach

4.4 Detailed Geomorphological Assessment

For Silver Creek, the receiving channel reach within the zone-of-impact most susceptible to erosion was selected based on field observations, as confirmed by both the RGA and RSAT following the rapid geomorphological assessment. The sensitive reach for Silver Creek, **Reach SC-A-5**, was surveyed to characterize bankfull channel conditions and the results of the detailed assessment were used to inform the erosion threshold assessment. The detailed assessment for **Reach SC-A-5** was completed August 8th, 2022. A summary of measured and computed values is presented in **Table 4** and the detailed assessment summary is provided in **Appendix F.**

The following activities were completed:

- Longitudinal profile along the channel bed to determine slope
- Eight representative cross-sectional surveys of the watercourse to determine average channel dimensions
- Two monumented cross sections including erosion pins in each bank to measure change in bank conditions over time
- Detailed instream measurements at each cross-section including bankfull channel geometry, riparian conditions, bank material, bank height/angle, and bank root density
- Bed material sampling at each cross-section following a modified Wolman's (1954) Pebble Count Technique or substrate sample
- Monumented geo-referenced photographs taken at each cross-section

Eight representative cross-sections were surveyed, and channel measurements were then used to calculate bankfull flow characteristics such as discharge, average velocity, and erosion or sediment transport sensitivity. As part of the detailed assessment, a longitudinal survey of the bed was completed to determine slope and a composite sample was taken to characterize bed materials. The detailed survey was completed for a 100 m section of channel upstream of the pond. The results of the survey for **Reach SC-A-5** determined that the reach had an average bankfull width of 6.02 m, and an average bankfull depth of 1.01 m. The bed substrate generally consisted of a veneer of fine sediment and organic matter (e.g., <2.0 mm) with some cobbles,

overlaying dense clayey-till. The bankfull gradient measured for **Reach SC-A-5** was 0.34%, and the bed gradient was 0.32%.

The results of the detailed assessment are presented in **Table 4**. A summary of the detailed assessment is provided in **Appendix F** for reference.

Table 4: Detailed assessment r	results for	Reach SC-A-5
--------------------------------	-------------	--------------

Channel parameter	SC-A-5					
Measured						
Average bankfull channel width (m)	6.02					
Average bankfull channel depth (m)	1.01					
Bankfull channel gradient (%)	0.32					
D ₅₀ (mm)	<2					
D ₈₄ (mm)	7.00					
Manning's n roughness coefficient	0.053					
Compute	ed					
Bankfull discharge (m ³ /s) *	6.70					
Average bankfull velocity (m/s)	1.11					
Unit stream power at bankfull discharge (W/m ²)	37.12					
Tractive force at bankfull (N/m ²)	33.59					
Flow competency for D ₈₄ (m/s)***	0.48					

* Based on Manning's equation

** Based on Shields diagram from Miller et al. (1997)

*** Based on Komar (1987)

5 Erosion Threshold Analysis

Erosion thresholds are used to determine the magnitude of flow required to potentially entrain and transport bed and/or bank material. As such, they are used to inform erosion mitigation strategies in channels influenced by conceptual flow and stormwater management plans. Erosion thresholds were modelled from detailed field observations of **Reaches SC-5-A**. Additionally, existing erosion thresholds for the tributary of Fairchild Creek to the south were analyzed to determine an appropriate critical discharge for the receiving watercourse. The erosion threshold is the theoretical point, typically expressed as a critical discharge or shear stress, at which entrainment of sediment would occur based on bed and bank materials. Due to variability between bed and bank composition and structure, erosion thresholds are determined for both bed and bank materials. The lower of the bed and bank erosion thresholds is adopted, as it provides the more conservative and limiting estimate.

5.1 Methodology

Threshold targets are determined using different methods that are dependent on channel and sediment characteristics. For example, thresholds for non-cohesive sediments are commonly estimated using a shear stress approach, similar to that of Miller et al. (1977), which is based on a modified Shield's curve. A velocity approach could also be applied. For cohesive materials, a method such as that described by Komar (1987), or empirically derived values such as those compiled by Fischenich (2001), Chow (1959) or Julien (1994), could be applied.

An erosion threshold is quantified based on the bed and bank materials and local channel geometry, in the form of a critical discharge. Theoretically, above this discharge, entrainment and transport of sediment can occur. To determine this discharge, the velocity, U, or Shear Stress, t, is calculated at various depths for a representative cross section until the average velocity or shear stress slightly exceeds the critical threshold of the bed material. The velocity is determined using a Manning's approach, where the Manning's n value is visually estimated through a method described by Acrement and Schneider (1989), calculated using the Limerino (1970) approach, or back-calculated from in-situ flow measurements. The velocity is mathematically represented as:

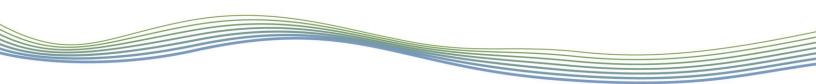
$$U = \frac{1}{n} d^{2/3} S^{1/2}$$
 [Eq. 1.]

where, *d* is depth of water, *S* is channel slope, and *n* is the Manning's roughness coefficient.

The shear stress is determined using the depth-slope product, which can be applied to the bed of open channels containing fluid undergoing steady flows. The shear stress is mathematically represented as:

$$t = d\rho g S_{bed}$$

Where, *t* is shear stress, *d* is the water depth, ρ is water density, *g* is acceleration due to gravity, and S_{bed} is the channel bed slope.


Because only 75% of bed shear stress applies to channel banks in uniform cross sections (Chow, 1959), the erosion threshold is scaled appropriately for these materials.

5.2 Results

An in-house erosion threshold database was consulted to identify potential existing thresholds of relevance to the proposed development. An erosion threshold of 0.239 m³/s was previously determined for a reach within the tributary of Fairchild Creek, **TFC4-1**, located immediately south of the property boundary. The threshold was based on the critical shear stress for the bank materials, which were classified as lean clayey soils (Chow 1959). Reach **TFC4-1** shares the same surficial geology and physiography as the Braneida study area to the east, which outlined an erosion threshold of 0.27 m³/s (Ecosystem Recovery Inc. 2021). To ensure a conservative approach, the smaller of the two thresholds, 0.239 m³/s, was used for the erosion exceedance analysis outlined in **Section 6**. The location of the defined erosion threshold along Reach **TFC4-1** is shown in **Appendix A**, for reference.

For **Reach SC-5-A**, the bed and bank materials showed significant variance, and erosion thresholds were subsequently determined for both. The bed materials were characterized as mostly loose, silty and clayey deposits of alluvial mud, overlaying a firm till-like clay subpavement. To remain conservative, the loose alluvial mud materials were selected to inform erosion threshold criteria. As per Julien (1994), these materials are predicted to have a permissible velocity of 0.61

[Eq. 2.]

m/s. From this, a critical discharge of 1.192 m³/s was determined for the bed materials within **Reach SC-A-5**. The bank materials were identified as a fairly compact till-like clay, which has a corresponding permissible shear stress of 7.00 N/m² (Chow, 1959). From this, a critical discharge of 0.497 m³/s was determined and, due to being lower than the bed material erosion threshold, defines the erosion threshold for reach **SC-A-5**. The summarized results of the erosion threshold assessment are provided in **Table 5**, below.

Channel parameter	SC-5-A				
Bankfull Conditions					
Average bankfull width (m)	6.02				
Average bankfull depth (m)	1.01				
Channel gradient (%)	0.32				
D ₅₀ (mm)	<2				
D ₈₄ (mm)	7.00				
Manning's n roughness coefficient	0.053				
Bankfull discharge (m ³ /s)	6.70				
Bankfull velocity (m/s)	1.11				
Channel	Bed Erosion Threshold				
Bed material	Alluvial mud (Julien, 1994)				
Apparent shear stress acting on bed (N/m ²)	13.56				
Critical shear stress acting on bed (N/m ²)	-				
Apparent velocity at the bed (m/s)	-				
Critical velocity at the bed (m/s)	0.61				
Critical discharge (m ³ /s)	1.192				
Channel	Banks Erosion Threshold				
Bank material	Fairly compact clay (till) (Chow, 1959)				
Critical shear stress acting on banks (N/m ²)	7.00				
Apparent velocity at the banks (m/s)	0.35				
Critical discharge (m ³ /s)	0.497				
Limiting critical discharge (m ³ /s)	0.497				

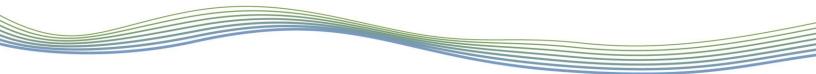
Table 5: Erosion Thresholds for Reach SC-5-A and TFC4-1

6 Post- to Pre-Development Erosion Exceedance Analysis

Using the results of the erosion threshold analysis and hydrological modelling provided by TYLin (2022) for post- and pre-development conditions, additional analyses regarding the impacts of SWM controls on potential erosion within the watercourses were completed with our own in-house model, based on four indices:

- 1) Cumulative time of exceedance
- 2) Number of exceedance events
- 3) Cumulative effective discharge volume
- 4) Cumulative effective work index (i.e. cumulative effective stream power)

These indices have been applied elsewhere in CH, TRCA, CVC, and other jurisdictions. Collectively these indices provide an evaluation of the number of exceedance events, and the duration and magnitude of erosion exceedance events. We note that the most relevant indicator is the cumulative effective stream power, as it reflects both the duration and magnitude of erosion exceedance events.


Time of exceedance, number of exceedances, and cumulative effective discharge and volume can be simply calculated by relating the discharge record to the critical discharge defined via erosion threshold analysis (detailed above). The cumulative time of exceedance is simply the summed duration of time where discharge exceeds the established erosion threshold, and the number of exceedances is the count of erosion exceedance events throughout the discharge record. The cumulative effective discharge represents the average magnitude of discharge exceeding the erosion threshold during a given erosion event, whereas the cumulative effective volume represents the total discharge volume that exceeds the erosion threshold throughout the modelled discharge record.

For more relevant indicators, namely the cumulative effective work index, hydraulic information is required. Our model applies the discharge to a characteristic cross-section. Using a Manning's approach, the discharge at each time step in the continuous hydrological model is converted into a velocity, depth of flow, shear stress, and/or stream power. These parameters are calculated based on field measurements of slope, cross-section and channel roughness. This provides analysis that is site appropriate and specific.

The post- and pre-development hydrological modelling reflects changes to the hydrological regime resulting from SWM measures being implemented within the catchment. Continuous flow data was provided by Urbantech (2023) in 15-minute increments spanning from 1950 to 2006. The hydrological modeling was analyzed to calculate the aforementioned erosion indices and to identify changes in the erosive potential within **SC-A-5** and **TFC4-1** following development. A full series of post- and pre-development hydrographs, overlain with the respective erosion thresholds and bankfull discharges, are provided in **Appendix G**, for reference.

6.1 Methods

To calculate work terms, both velocity and shear stress were calculated at each time step. Through an iterative process, water depth and velocity were calculated for each discharge passing through a representative cross-section. The cross-section is divided into floodplain and bankfull sections. The cross-section is further broken into panels. Velocity, U, is calculated for each panel using the Manning's approach. This is a conservative approach as it allows dissipation of flood energy in the floodplain.

The total discharge, Q_T at each time step is based on the summation of the discharge of all panels, Q_i , such that:

$$[\mathsf{Eq. 3.}]$$

 Q_i is discharge through a panel (which is set at 10 percent of the cross-section). Q_i is defined as:

$$Q_i = U_i w_i d_i$$
 [Eq. 4.]

where, w_i and d_i are width and depth for each panel. The discharge for each panel was then summed to give a total discharge. This is more accurate than using average cross-sectional dimensions of a simple trapezoidal channel, as the bed is usually irregular, and a panel approach more accurately represents the true cross-sectional area.

For each event, the discharge is converted into a maximum depth and average velocity. The maximum depth is used to calculate a maximum bed shear stress, $\tau_{o_{max}}$ based on:

$$\tau_{o_{\max}} = d_{\max} \rho g S_{\text{bed}}$$
[Eq. 5.]

where, d_{\max} is the maximum water depth, ρ is water density, g is acceleration due to gravity, and S_{bed} is the channel bed slope.

Cumulative total work, ω_{tot} is defined as:

$$\omega_{\text{tot}} = \sum \tau_{0_{\text{max}}} \cdot U_{\text{avg.}} \Delta t$$
 [Eq. 6.]

where, U_{avg} is average velocity (Q_{tot}/A_{tot} , where A_{tot} is wetted area), while cumulative effective work index (ω_{eff}) is defined by:

$$\omega_{\text{eff}} = \sum \tau - \tau_{cr} \cdot U \cdot \Delta t, \, \omega < 0 = 0$$
[Eq. 7.]

where, τ_{cr} is the critical shear stress.

Time of exceedance t_{ex} defined as:

$$t_{\rm ex} = \sum \Delta t \text{ for } (Q_T > Q_{\rm threshold})$$
 [Eq. 8.]

where, $Q_{\text{threshold}}$ is the discharge at the erosion threshold.

The cumulative effective discharge volume (CED) is defined as:

$$CED = \sum Q \text{ (for } Q > Q_{threshold})$$
[Eq. 9.]

The number of exceedance events is simply the count of all instances where discharge exceeds the established threshold.

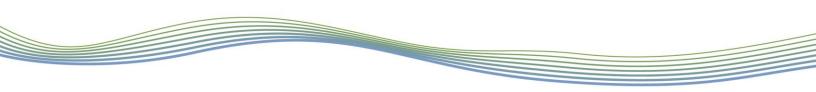
We note that the most relevant indicator is the cumulative effective stream power, as it reflects both the magnitude and duration of erosion events. However, due to the lack of hydrological data available within the receiving watercourses, the exceedance analysis was reviewed based on cumulative effective discharge at the site level (i.e. the average magnitude of flow exceeding the threshold during a given erosion event). Consequently, the cumulative effective work index was excluded from the results analysis, as it requires channel cross sections and therefore is only applicable to in-channel (i.e., not site-level) erosion exceedance analyses. Given the hydrological modelling constraints, the site-level assessment of the potential impacts of the proposed development on the receiving watercourses required a modified framework that utilized unitary erosion thresholds to determine scaled site-level critical discharges (i.e., "allowable" release rates). A unitary erosion threshold was established for each receiving watercourse using drainage areas obtained from Urbantech (2023) and the Ontario Watershed Information Tool (OWIT). Unitary thresholds were determined using Equation 4, below:

$$ET_{unitarv} = ET / DA$$

[Eq. 10.]

where, *ET* is the erosion threshold in m³/s for the subject reach, and *DA* is the drainage area in hectares. The resulting unitary erosion thresholds for each receiving watercourse were subsequently multiplied with the drainage areas of the associated hydrological modelling nodes to determine the threshold release rates. For the drainage swale **POI2**, the lower of the two unitary threshold values was adopted, as it provides a more conservative estimate. The results are presented in **Table 6**, below.

Receiving Watercourse Reach	Associated SWM Outlet or POI	Existing Drainage Area (ha)	Unitary Erosion Threshold (m ³ /s/ha)	Hydrological Model Drainage Area (ha)	Threshold Release Rate (m ³ /s)
SC-A-5	Outlet E & C	600.24	0.000828	72.36	0.060
TFC4-1	Outlet D & B	367.13	0.000651	45.67	0.030
POI2	POI2	367.13	0.000651	7.29	0.005


Table 6: Site-level threshold release rates for the proposed developments

The site-level threshold release rates of 0.060 m³/s, 0.030 m³/s, and 0.005 m³/s were determined for the associated receiving watercourse reaches **SC-A-5**, **TFC4-1**, and **POI2**, respectively. We note that under existing conditions the majority of the drainage area for Silver Creek upstream of **SC-A-5** is developed, and that OFAT typically overestimates the catchment areas in these scenarios. Consequently, it is possible that this drainage area has been overestimated leading to the calculation of a particularly conservative unitary erosion threshold and site-level scaled threshold release rate.

Using the computed site-level threshold release rates, an exceedance analysis was completed using the results of continuous hydrological modelling for the site between the years of 1950 and 2005 provided by Urbantech (2023).

6.2 Results

The full series of post- to pre-development hydrographs are included in **Appendix G**, and include the erosion threshold based on discharge, for reference. **Table 7** provides the results of the assessment based on the hydrographs provided by Urbantech (2023).

Simulation			CED (m ³)	t _{ex} (hrs)	# of Exceedances
Flows to POI 2	Scaled Q _{crit} : 0.005 m ³ /s	Pre	246,012	4,636	745
		Post	202,311	3,895	1306
		Change (%)	-17.76	-15.97	75.30
Flows to Critical Reach TFC4-1	Scaled Q _{crit} : 0.030 m ³ /s	Pre	1,846,750	6,573	1,031
		Post	1,459,980	12,278	1,342
		Change (%)	-20.94	86.81	30.16
Flows to Critical Reach SC-A-5	Scaled Q _{crit} : 0.060 m ³ /s	Pre	982,545	3,096	381
		Post	41,451	287	144
		Change (%)	-95.78	-90.72	-62.20

 Table 7: Results of the post- to pre-development erosion exceedance analysis

We note that the lack of an in-channel hydrological model exaggerates the severity of changes to the geomorphic regime, as there are little-to-no contributing areas within the hydrological model that would remain un-developed and serve as a 'buffer' to the relative changes in effective discharge. Due to the site-level assessment framework, extrapolating the results of this analysis to apply to the receiving watercourses inherently assumes that the entirety of their respective drainage areas would behave hydrologically identical to the study area. The upstream catchment for **Reach SC-A-5** is fully urbanized with minimal SWM controls, and as such, would theoretically contribute a disproportionate amount of runoff and channel flow relative to the proposed 299 Lynden Road development with SWM controls. Thus, the results of this analysis must be interpreted accordingly.

The erosion exceedance analysis indicates a reduction in erosion potential within the receiving swale-type channel associated with **POI2**. The cumulative effective volume (CED) and cumulative exceedance duration (t_{ex}) are predicted to decrease by 18% and 16%, respectively, whereas the number of exceedances is predicted to increase by 75%. This indicates more-frequent, lower-magnitude erosion events within the receiving reach with a decrease in the overall long-term rate of erosion. As POI2 is associated with a swale-type channel, a minimal decrease in long-term erosion is not expected significantly impact this feature.

Flows to **Reach TFC4-1** from the development site are predicted to generally mimic existing contributions and consequently maintain the long-term rate of erosion. The CED is predicted to decrease by 21%, while the t_{ex} and number of exceedances are predicted to increase by 87% and 30%. This indicates a post-development flow regime characterized by longer and more-frequent, but lower-magnitude exceedance events that are not expected to significantly increase erosion or sedimentation rates beyond their natural range of variability for this location.

Within the context of the modelling approach, the results of the erosion exceedance assessment indicate a significant reduction in long-term rates of erosion within the receiving **Reach SC-A-5**

along Silver Creek. The CED is predicted to decrease by 96%, and the duration and number of exceedances are predicted to decrease by 91% and 62%, respectively. These results demonstrate events of lower magnitude and frequency, and thus increases in post-development erosion are not expected along **Reach SC-A-5**. The hydrological model is based on flows received from approximately 12% of the catchment area for **Reach SC-A-5**. Therefore, a decrease in erosion potential based on this relatively small portion of the reach drainage area is not expected to significantly impact overall channel morphology.

We note that these results can be further refined during detailed design stages through minor pond design revision (e.g., orifice plate sizing), LID implementation, and model-expansion, where necessary. As such, we do not foresee the requirement for revision to the current SWM plan at this stage. The proposed 48-72 hr extended detention of the 25 mm event, combined with LID measures, are expected to sufficiently mitigate erosion within the receiving watercourses.

7 Erosion Hazard Assessment

Most watercourses in southern Ontario have a natural tendency to develop and maintain a meandering planform, provided there are no topographical constraints. A meander belt width assessment estimates the lateral extent that a meandering channel has historically occupied and will likely occupy in the future. This assessment is therefore useful for determining the potential hazard to proposed activities in the vicinity of a stream.

When defining the erosion hazard for a creek system, the MNRF (2002) and TRCA (2004) protocols treat confined and unconfined valley systems differently. Confined systems are those where the watercourse is contained within a defined valley, where contact between the watercourse and a valley wall is possible. The erosion hazard for confined systems is typically defined based on a valley toe erosion allowance and stable slope allowance. In contrast, unconfined systems are those with poorly defined valleys or slopes well-outside where the channel could realistically migrate. The erosion hazard for unconfined systems is delineated by a meander belt width.

A meander belt width can be applied based on 20 times the bankfull channel width. Alternatively, the meander belt width can be determined through a detailed geomorphological study that examines the largest channel meanders observed through historical and recent aerial photograph interpretation. The meander belt width can then be graphically defined using orthorectified aerial imagery by determining the channel centerline and the channel's central tendency (i.e., meander belt axis). In cases where the channel is not discernible in aerial photographs or the channel has been substantially modified, empirical models can be used to estimate the meander belt width.

As noted in **Section 3.2** of this report, **Reaches SC-A-1**, **SC-A-2**, **SC-A-3**, and **SC-A-4** along Silver Creek were classified as confined. Natural meanders are present within the subject lands and were measured in the 2018 aerial image. The largest meander amplitude was measured along **Reach SC-A-2**, at 28.7 m. From this the following equation was utilized to define a meander belt with:

$$B_w = M_{amp} + W_b * 20\% \textit{FOS}$$

[Eq. 11.]

where B_w is meander belt width (m), M_{amp} is the largest meander amplitude, W_b is bankfull crosssection (m), and $_{FOS}$ is a 20% factor of safety that was applied. Based on the largest meander amplitude of 28.7 m and a bankfull width of 4.35 m, a final meander belt width of 40 m was determined for the subject reaches. A map showing the extent of the delineated meander belt width is provided in **Appendix C**. In areas where it extends beyond the toe of slope, we have truncated the meander belt width along the toe of slope. In these areas the erosion hazard is associated with the geotechnical long-term stable slope with details provided in the 2020 geotechnical investigation by Terraprobe (Terraprobe 2020).

8 Summary

GEO Morphix was retained to complete an erosion hazard and mitigation assessment in support of the proposed development and associated stormwater management at 299 Lynden Road, Brantford, Ontario. Field characterizations of all potentially impacted watercourse features were completed to assess their sensitivity to erosion. Detailed geomorphological field assessments were completed at the most erosion-sensitive reaches along each of the receiving watercourses. The results of the detailed field assessments where used to determine erosion thresholds (critical discharges) for **Reach SC-A-5** in Silver Creek and **Reach TFC4-1** in the Garden Avenue tributary of Fairchild Creek. A post- to pre-development erosion exceedance analysis was completed to predict potential impacts to long-term rates of erosion within the receiving watercourses. Through this, it was determined that the proposed SWM facilities will adequately control flows such that erosion or sedimentation will not be significantly exacerbated as a consequence of development. We note that these results can be further refined at detailed design stages. An erosion hazard assessment was completed to delineate and inform development constraints in the proximity of Silver Creek. Through this, a 40 m meander belt width was assigned. In areas where the meander belt width extends beyond the toe of slope, the erosion hazard is then associated with the geotechnical long-term stable slope.

We trust this report meets your requirements at the time. Should you have any questions please contact the undersigned.

Respectfully submitted,

aul Villard Ph.D., P.Geo., CAN-CISEC, EP, CERP Director, Principal Geomorphologist

Jan Franssen, Ph.D. Senior Watershed Scientist

Krin-Smit

Karine Smith, M.Sc. Environmental Scientist

9 References

Acrement, G.J. and Schneider, V.R. 1989. Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Floodplains. U.S. Geological Survey Water-Supply Paper 2339. United States Government Printing Office.

Brierley, G. J. and Fryirs, K. A. 2005. Geomorphology and River Management: Applications of the River Styles Framework. Blackwell Publishing, Oxford, UK, 398pp. ISBN 1-4051-1516-5.

Chapman, L.J., and Putnam, D.F. 1984: Physiography of Southern Ontario, Second Edition. Ontario Research Foundation, Toronto, ON.

Chow, V.T. 1959. Open channel hydraulics. McGraw Hill, New York.

Downs, P.W. 1995. Estimating the probability of river channel adjustment. Earth Surface Processes and Landforms, 20: 687-705.

Ecosystem Recovery Inc. 2021. Braneida Stormwater Management Facility Retrofit and Downstream Channel Remediation Municipal Class Environmental Assessment. City of Brantford.

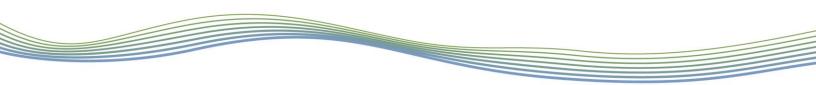
Fischenich, C. 2001. Stability Thresholds for Stream Restoration Materials. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-29), U.S. Army Engineer Research and Development Center, Vicksburg, MS.

Galli, J. 1996. Rapid Stream Assessment Technique, Field Methods. Metropolitan Washington Council of Governments.

Julien, P. Y. 1994. Erosion and Sedimentation (1st ed.). Cambridge University Press.

Komar, P.D. 1987. Selective gravel entrainment and the empirical evaluation of flow competence. Sedimentology, 34: 1165-1176.

Limerinos, J.T., 1970. Determination of the Manning coefficient from measured bed roughness in natural channels. United States Geological Survey Water-Supply Paper 1898B.


Miller, M.C., McCave, I.N. and Komar, P.D. 1977. Threshold of sediment erosion under unidirectional currents. Sedimentology, 24: 507-527.

Ministry of Environment (MOE). 2003. Ontario Ministry of Environment. Stormwater Management Guidelines.

Ministry of Natural Resources (MNR). 2002. Technical Guide – River & Stream Systems: Erosion Hazard Limit.

Montgomery, D.R. and J.M. Buffington. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109 (5): 596-611.

Newson, M. D., Newson, C. L., and Ne, T. 2000. Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography, 2: 195–217.

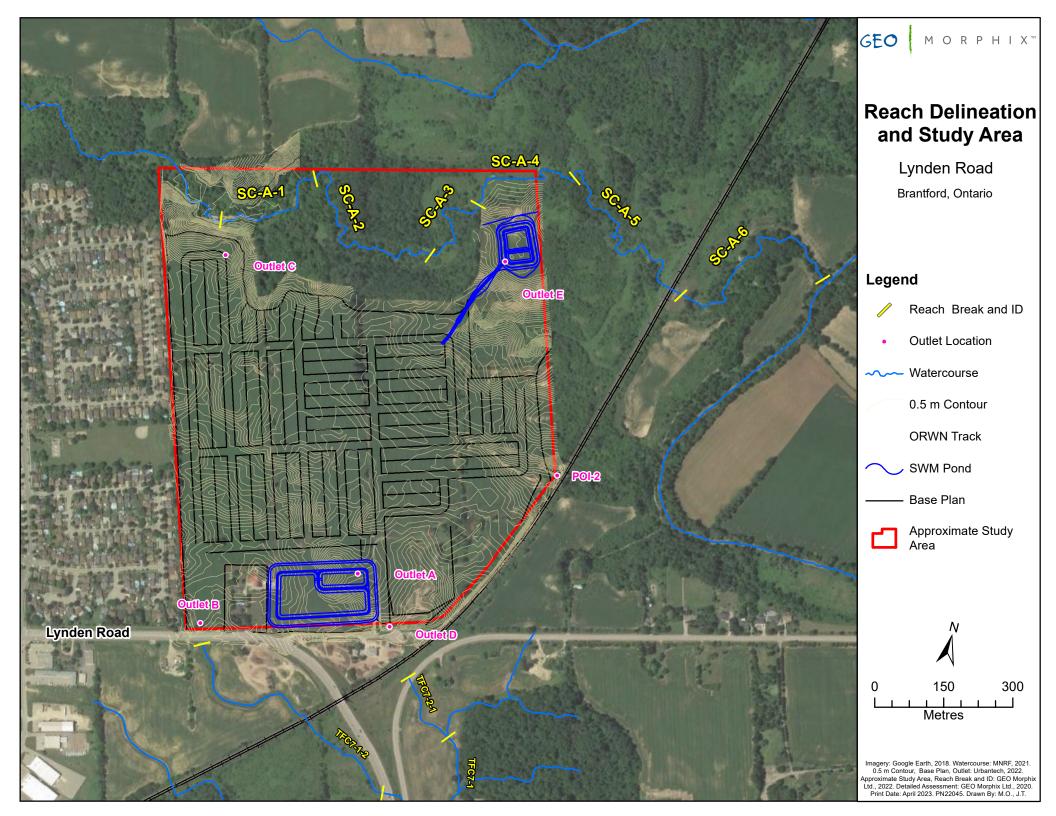
Ontario Geological Survey (OGS). 2010. Physiography of Southern Ontario.

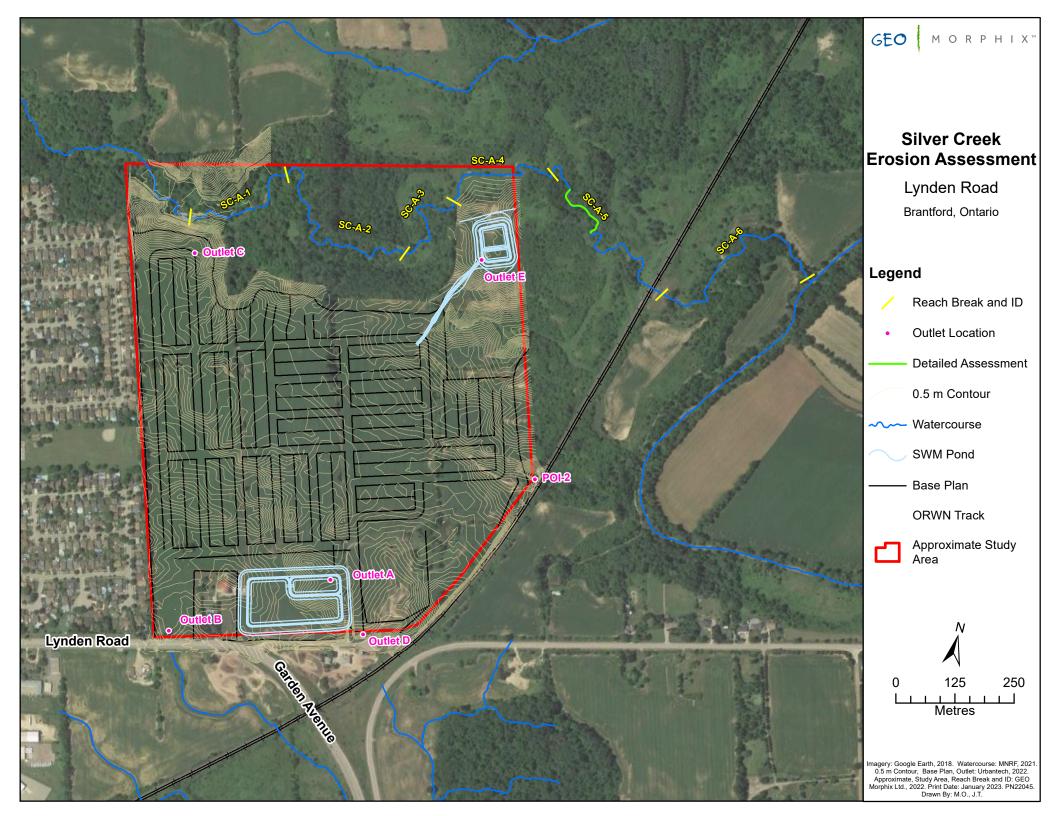
Richards, C., Haro, R.J., Johnson, L.B. and Host, G.E. 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology, 37: 219-230.

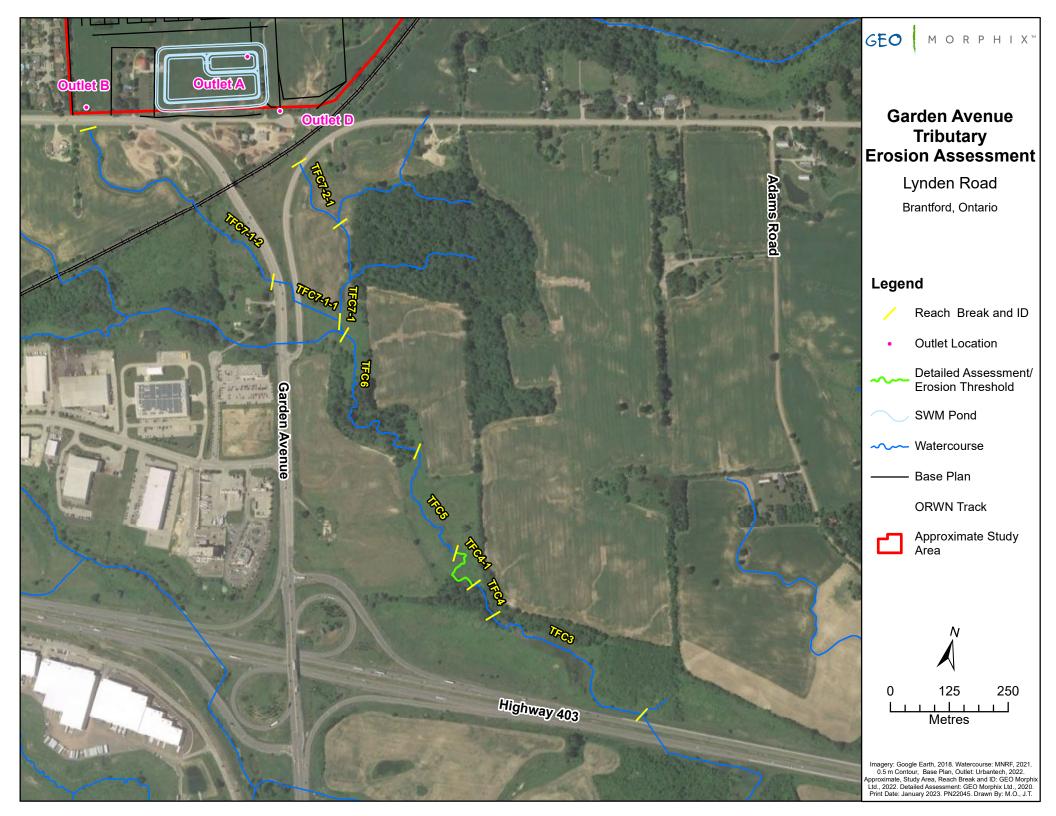
Terraprobe. 2020. Revised Draft Slope Stability and Streambank Erosion Analysis and Preliminary Geotechnical Investigation Proposed Residential Subdivision Brantford, Ontario.

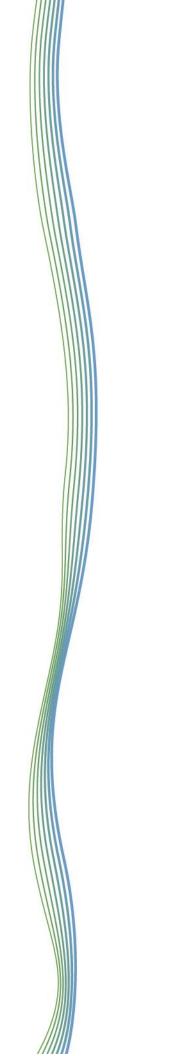
Toronto and Region Conservation Authority (TRCA). 2004. Belt Width Delineation Procedures.

Vermont Agency of Natural Resources (VANR). 2007. Step 7: Rapid Geomorphic Assessment (RGA). Phase 2 Stream Geomorphic Assessment.


Ward, A. D. Mecklenberg, J. Mathews, and D. Farver. 2002. Sizing Stream Setbacks to Help Maintain Stream Stability. Paper Number: 022239. 2002 ASAE Annual International Meeting. Chicago, IL, USA. July 28-July 31, 2002.

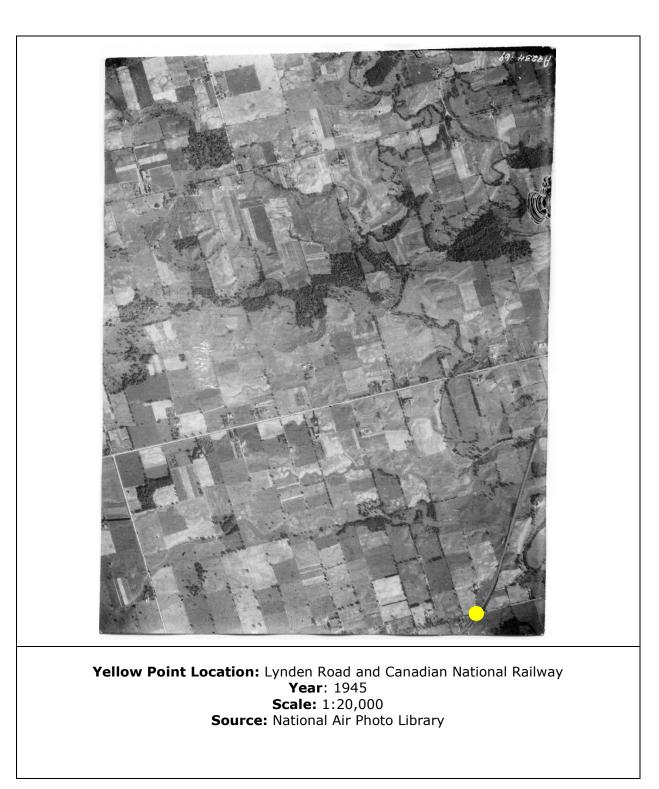

Wentworth, C. (1922). A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30(5), 377-392.

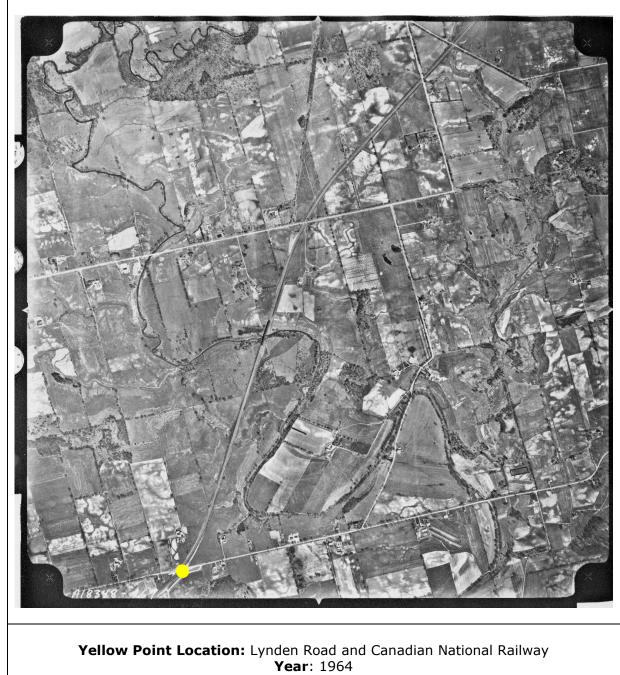

Wolman, M.G. 1954. A method of sampling coarse riverbed material. Transactions of the American Geophysical Union, 35 (6): 951 – 956.

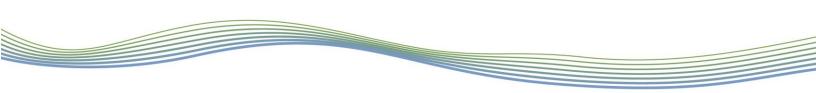


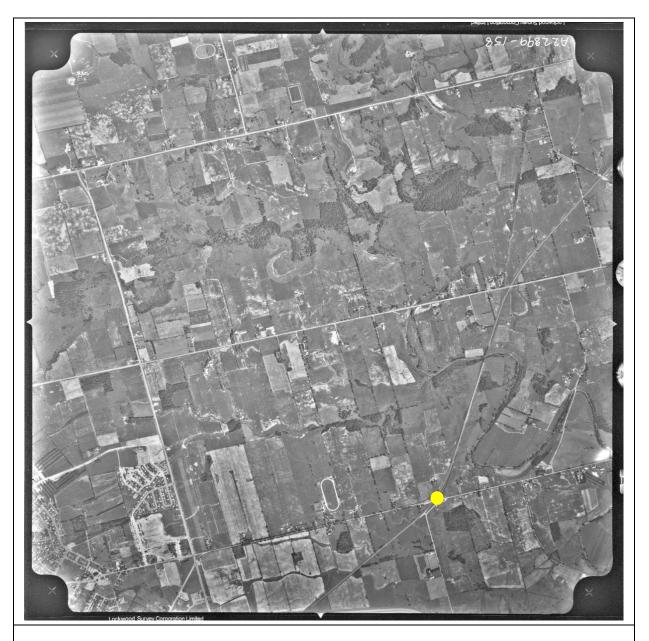
Appendix A Reach Delineation and Study Area

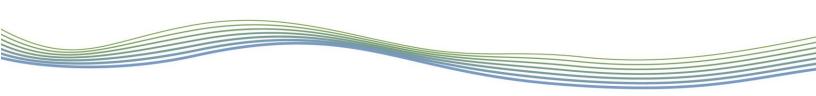




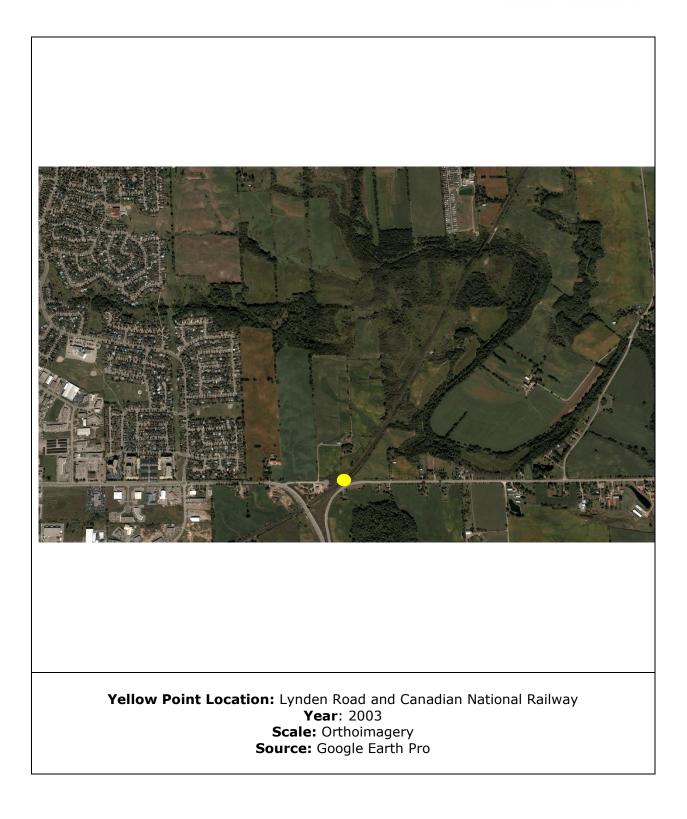


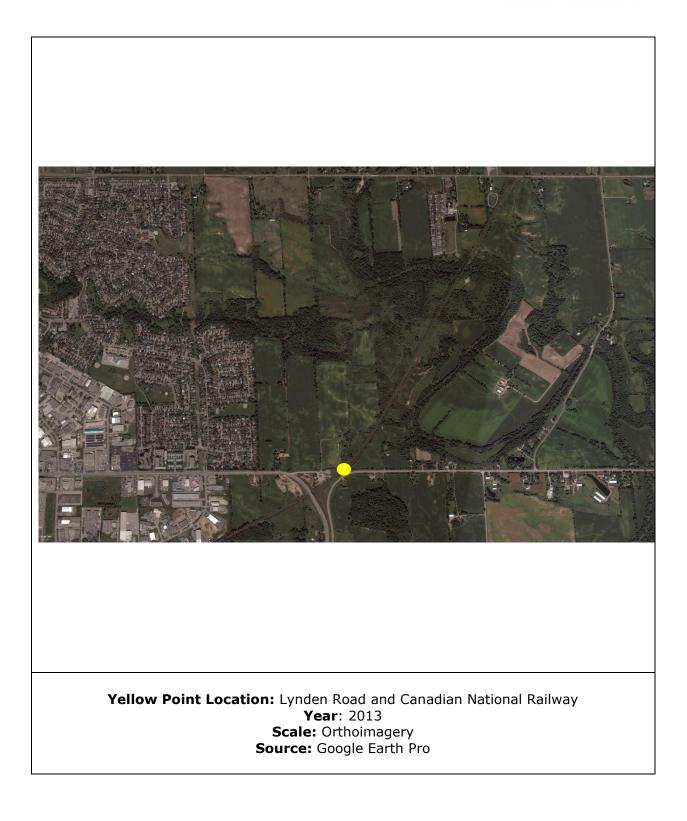

Appendix B Historical Aerial Photographs

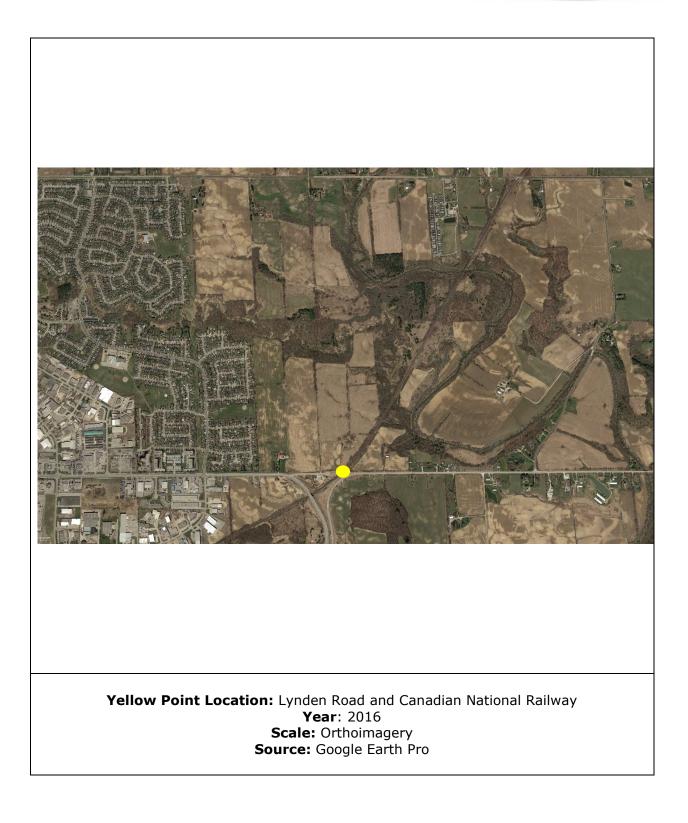


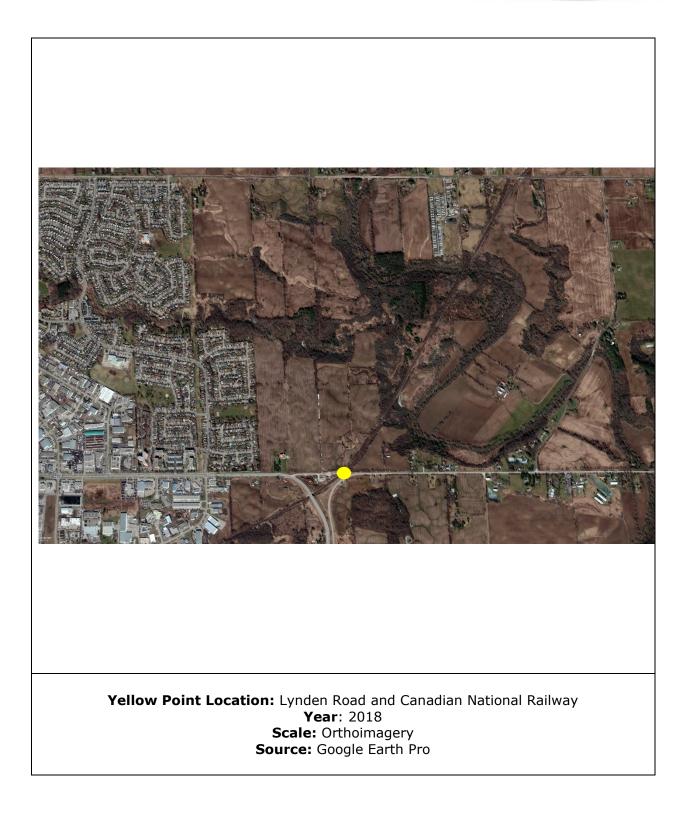


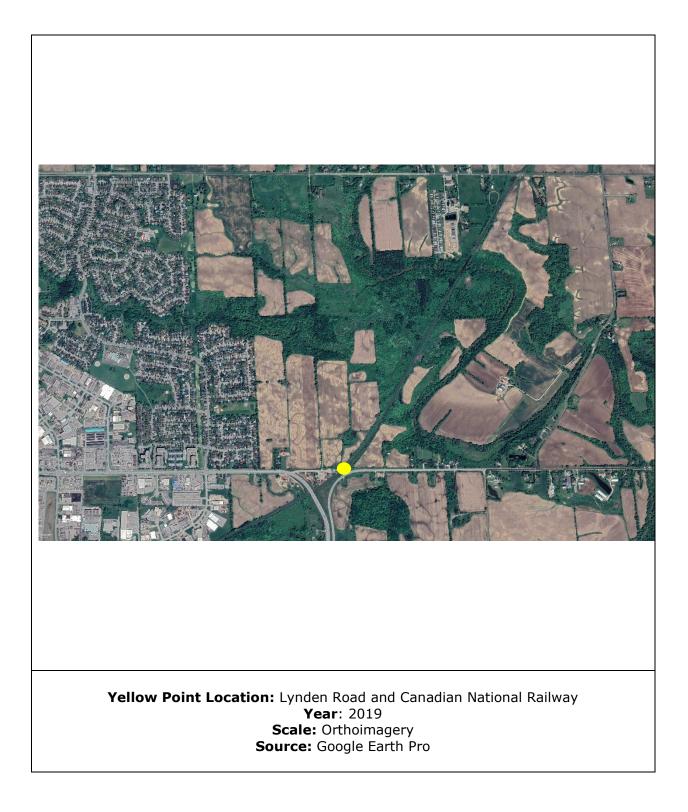
Scale: 1:20,000 Source: National Air Photo Library

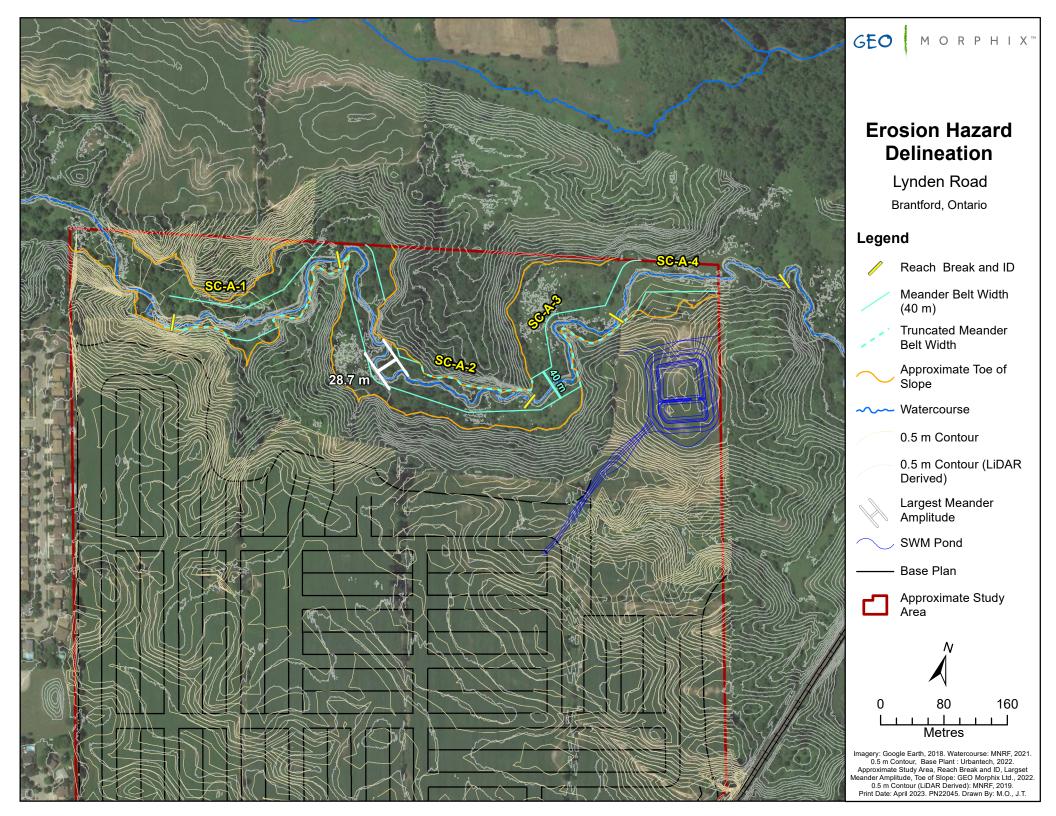


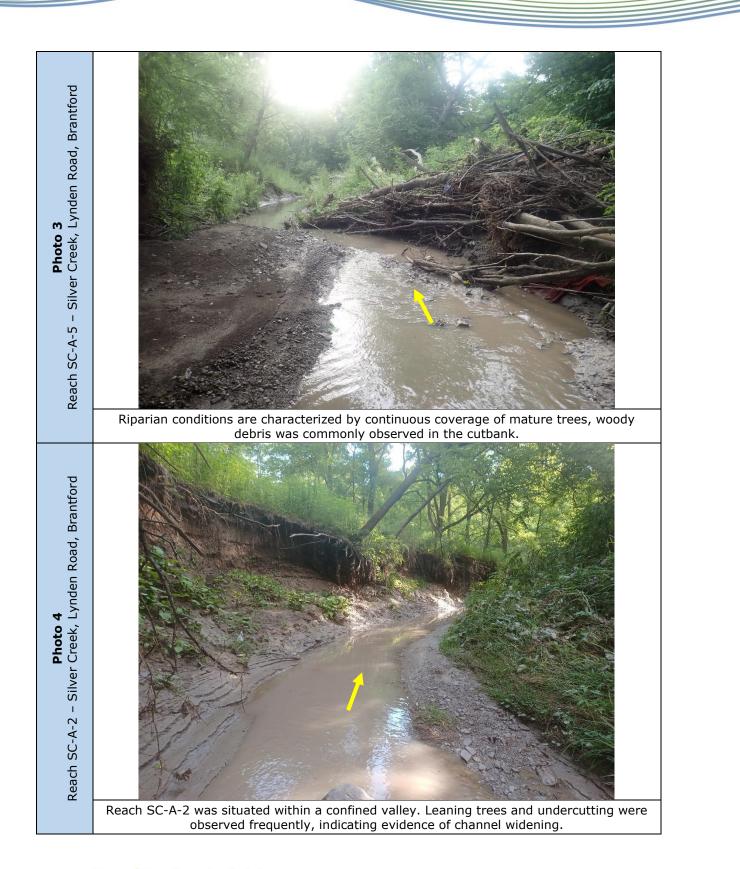

Yellow Point Location: Lynden Road and Canadian National Railway Year: 1972 Scale: 1:25,000 Source: National Air Photo Library



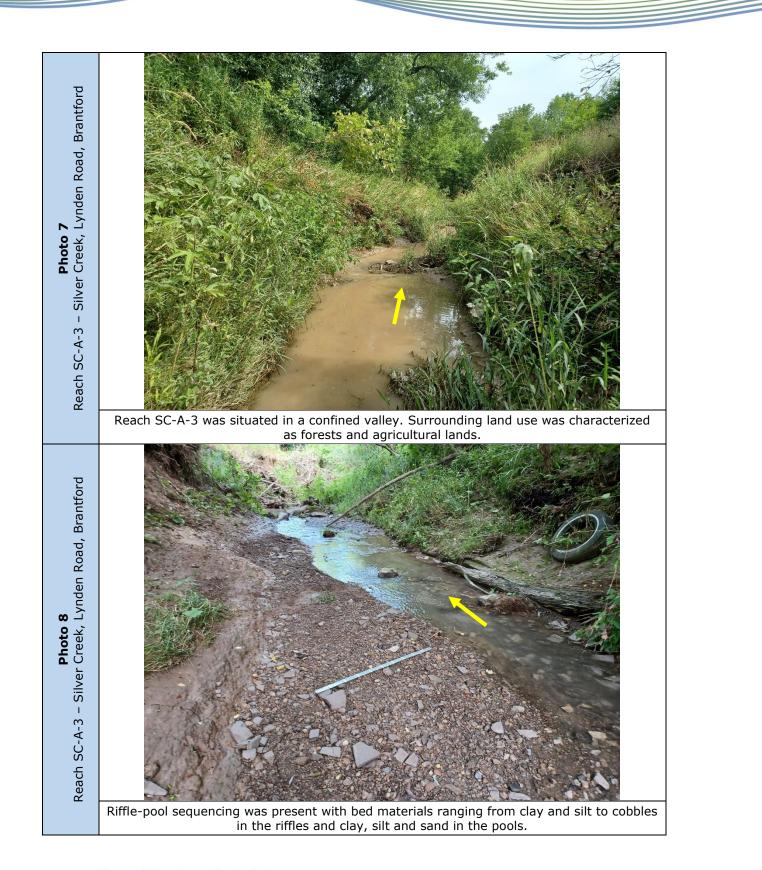



Yellow Point Location: Lynden Road and Canadian National Railway **Year**: 1982 **Scale:** 1:25,000 Source: National Air Photo Library

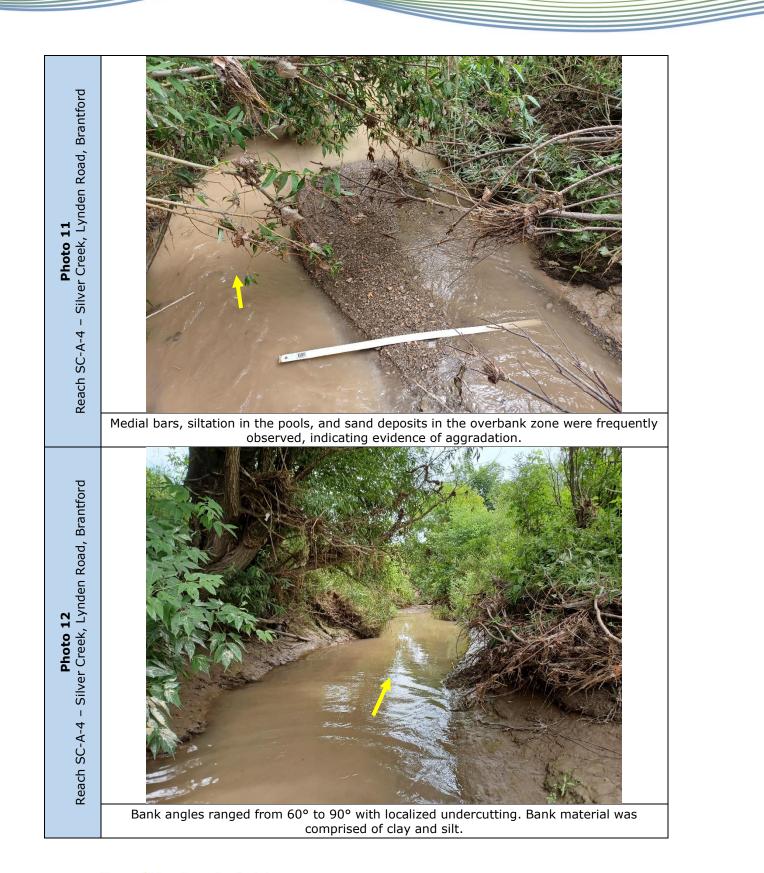


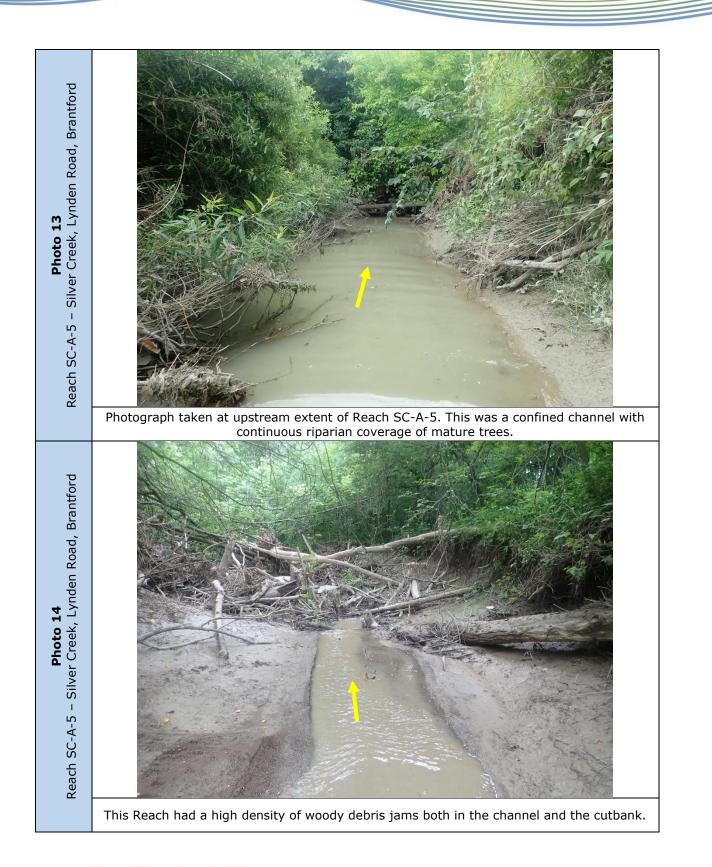


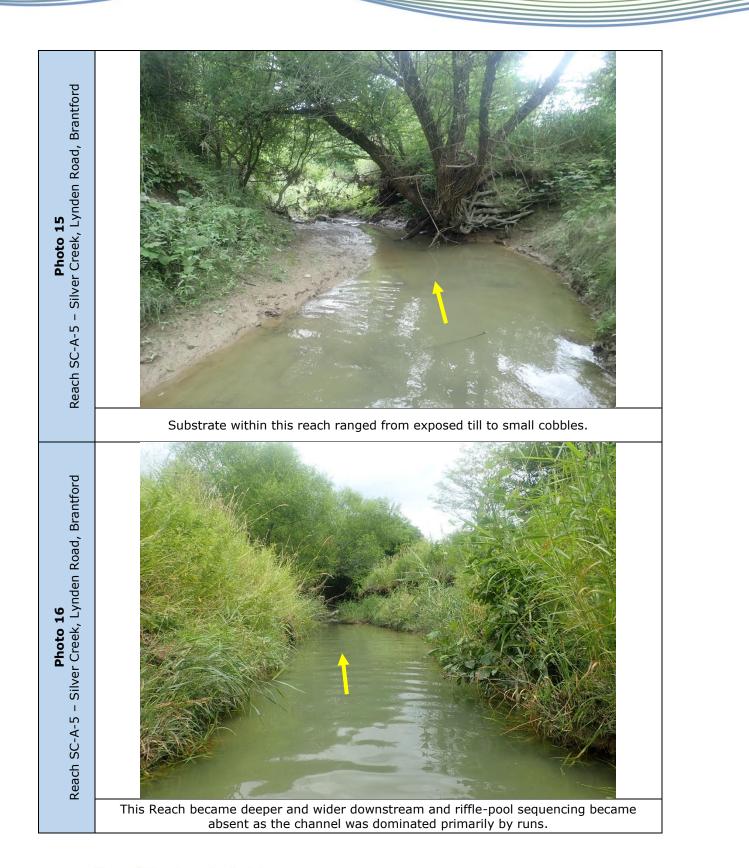
Appendix C Erosion Hazard Delineation

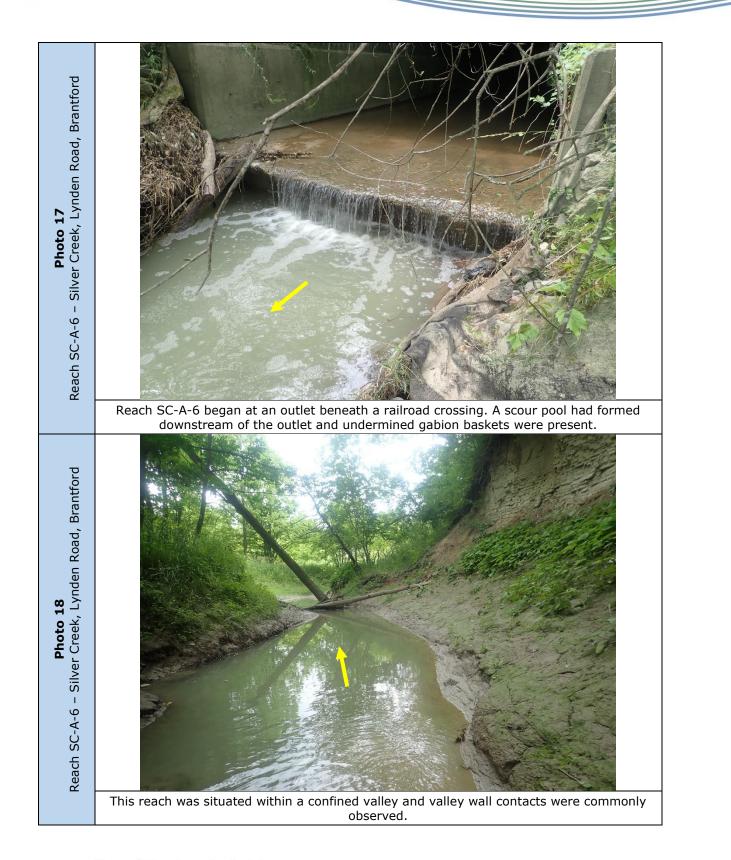


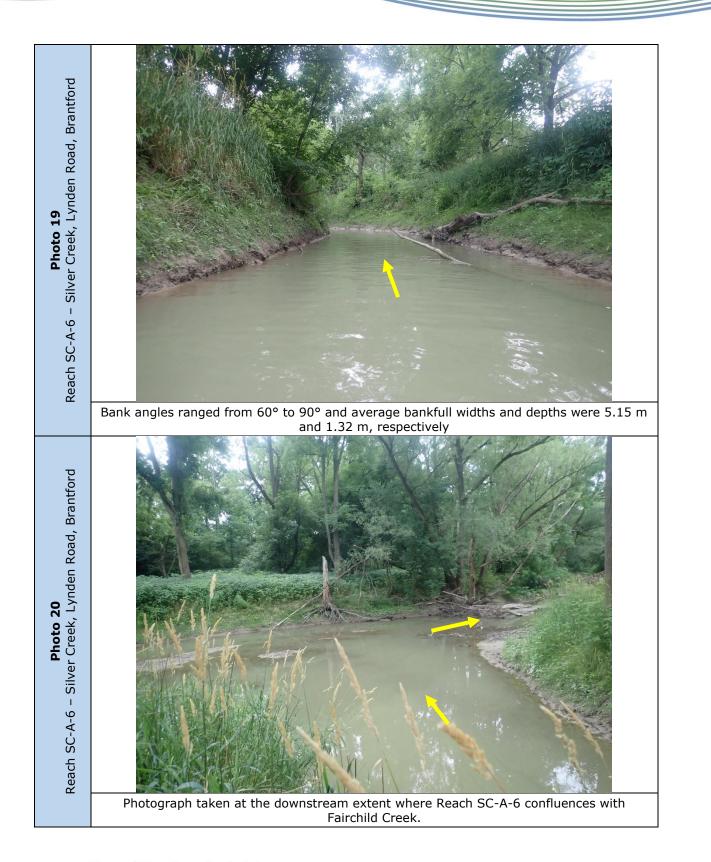
Appendix D Photographic Record

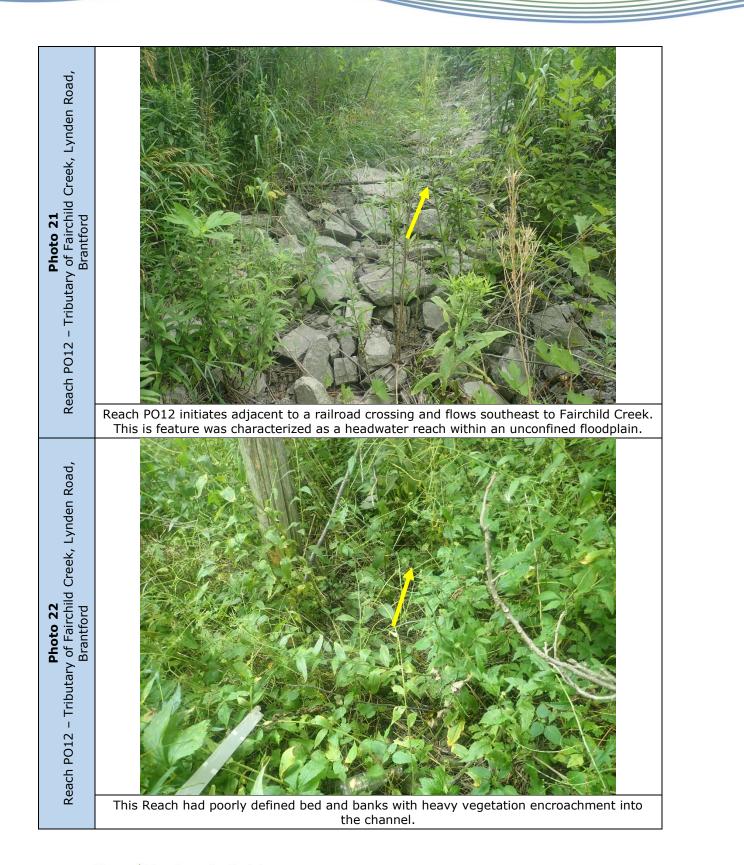












Appendix E Field Observations

GEO MORPHIX

1

General Site Characteristics

Project Code: 22045

Date:		2022-07-27	Stream/Reach: SC-A-5, Silver Ge
Weat	her:	Sunny 24°C	Location: Under Rd., Branth
Field	Staff:	AA AV.	Watershed/Subwatershed: Fairchilds Creek
Featu			Site Sketch: Upstream and a fille
	Reach break		The Company of the Co
жж	Cross-section		A A A A A A A A A A A A A A A A A A A
	Flow direction		el Contra for Strange
\sim	Riffle		N N N N N N N N N N N N N N N N N N N
\bigcirc	Pool	2365	Den l
CTINO	Medial bar		XIXBE
4 <i>444444</i>	Eroded bank		6 Co En En innetres
	Undercut bank		A AX A SECOND
XXXXXX	Rip rap/stabilizatio	n/gabion	
	Leaning tree		
xx	Fence		avarde to Bee X
	Culvert/outfall		Side the state
\bigcirc	Swamp/wetland		Cars Marke
VVV	Grasses		
G	Tree		A S S
	Instream log/tree		K KK
***	Woody debris		
只	Station location		H H H
V	Vegetated island		
Flow 1			A ANT OL
H1	Standing water		
H2	Scarcely perceptibl	e flow	11 F G W
H3	Smooth surface flo		TO TOWER
H4	Upwelling		ALL CONTRACTOR
H5	Rippled		B C CO
H6	Unbroken standing	wave	The second secon
H7	Broken standing w		
H8	Chute		
H9	Free fall		P.P.
Subst			TRUS XY
Subsu S1	Silt	S6 Small boulder	AND HE
S1	Sand	S7 Large boulder	
52 S3	Gravel	S8 Bimodal	avaretty CER 353
55 S4	Small cobble	S9 Bedrock/till	J Saho PATX D*
54 S5	Large cobble		O. K C. 6 Elay 1511+
Other			
		ED Erocian nin	
BM	Benchmark	EP Erosion pin	
BS	Backsight	RB Rebar	SC-A-Ce
DS	Downstream	US Upstream	
WDJ	Woody debris jam	TR Terrace	H Townstream
vwc	Valley wall contact		Raildieus Scale:
BOS	Bottom of slope	FP Flood plain	Additional Notes:
TOS	Top of slope	KP Knick point	

- siltation common throughout reach. - clayfill present along bed.

GEO MORPHIX

Project Code: 22045 **Rapid Geomorphic Assessment** Date: Stream/Reach: 2012-07-27 airchilds (reek Weather: Watershed/Subwatershed: indin Rd. Brantfor **Field Staff:** Location: Geomorphological Indicator Present? Factor Process No. Description Value Yes No 1 Lobate bar Coarse materials in riffles embedded 2 3 Siltation in pools ١ Evidence of Aggradation Medial bars 4 (AI) 5 Accretion on point bars 4 Poor longitudinal sorting of bed materials 6 7 Deposition in the overbank zone Sum of indices = 415.0 1 Exposed bridge footing(s) 2 Exposed sanitary / storm sewer / pipeline / etc. N/A 3 Elevated storm sewer outfall(s) Undermined gabion baskets / concrete aprons / etc. 4 Evidence of 5 Scour pools downstream of culverts / storm sewer outlets Degradation 6 Cut face on bar forms (DI) 7 Head cutting due to knickpoint migration 8 Terrace cut through older bar material 9 Suspended armour layer visible in bank 10 Channel worn into undisturbed overburden / bedrock Sum of indices = 2 L Fallen / leaning trees / fence posts / etc. 1 1 Occurrence of large organic debris 2 3 Exposed tree roots Basal scour on inside meander bends 4 Evidence of Basal scour on both sides of channel through riffle 5 Widening Outflanked gabion baskets / concrete walls / etc. 6 A (WI) 7 Length of basal scour >50% through subject reach 8 Exposed length of previously buried pipe / cable / etc. 1A Λ 9 Fracture lines along top of bank 10 Exposed building foundation Sum of indices = 6,71 4 5 1 Formation of chute(s) Single thread channel to multiple channel 2 Evidence of 3 Evolution of pool-riffle form to low bed relief form Planimetric Form 4 Cut-off channel(s) Adjustment 5 Formation of island(s) (PI) 6 Thalweg alignment out of phase with meander form 7 Bar forms poorly formed / reworked / removed Sum of indices = 0,14 Stability Index (SI) = (AI+DI+WI+PI)/4 = Additional notes: 0.47 Condition In Regime In Transition/Stress **In Adjustment** 0.41 SI score = 0.00 - 0.20 0.21 - 0.40

Completed by: Checked by:

]

Rapid Stream Assessment Technique

Project Code: 22045

Date:	2022-07-27	Stream/Reach:	SC-A-	5
Weather:	Sinny 240C	Location:	Lindon R	d. Biantford
Field Staff:	AA W.	Watershed/Subwater	rshed: Fairchild	S Crak
Evaluation Category	Poor	Fair	Good	Excellent
	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	 71-80% of bank network stable Infrequent signs of bank sloughing, slumping or failure 	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure
Channel	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m 	 Stream bend areas stable Outer bank height 0.6-0.9 m above stream bank (1.2- 1.5 m above stream bank for large mainstem areas) Bank overhang 0.6-0.8 m 	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m
Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	 Exposed tree roots predominantly old and large, smaller young roots scarce 2-3 recent large tree falls per stream mile 	 Exposed tree roots old, large and woody Generally 0-1 recent large tree falls per stream mile
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	• Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material	 Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material
1.3.419	 Channel cross-section is generally trapezoidally- shaped 	 Channel cross-section is generally trapezoidally- shaped 	Channel cross-section is generally V- or U-shaped	 Channel cross-section is generally V- or U-shaped
Point range	□ □ □ 1 □ 2		☑ 6 □ 7 □ 8	□ 9 □ 10 □ 11
	 > 75% embedded (> 85% embedded for large mainstem areas) 	50-75% embedded (60- 85% embedded for large mainstem areas)	 25-49% embedded (35- 59% embedded for large mainstem areas) 	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition 30-59% sand-silt 	 High number of deep pool (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate compositio <30% sand-silt
Channel Scouring/ Sediment Deposition	Streambed streak marks and/or "banana"-shaped sediment deposits common	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits uncommon 	 Streambed streak marks and/or "banana"-shaped sediment deposits absent
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	• Point bars common, moderate to large and unstable with high amount of fresh sand	 Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand 	 Point bars few, small and stable, well-vegetated and/or armoured with littl or no fresh sand
Point range	0 0 1 C 2		□ 5 □ 6	□7 □ 8

(

Date:	202207-27	Reach: SC-A	-5 Project Code:	22045
Evaluation Category	Poor	Fair	Good	Excellent
	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	 Wetted perimeter 40- 60% of bottom channel width (45-65% for large mainstem areas) 	 Wetted perimeter 61-85% of bottom channel width (66-90% for large mainstem areas) 	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas)
	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools present, riffles and runs dominant. Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffles, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)
Physical Instream	 Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble
Habitat	• Riffle depth < 10 cm for large mainstem areas	 Riffle depth 10-15 cm for large mainstem areas 	 Riffle depth 15-20 cm for large mainstem areas 	 Riffle depth > 20 cm for large mainstem areas
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	• Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure	Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure	 Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure
	 Extensive channel alteration and/or point bar formation/enlargement 	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	 Slight amount of channel alteration and/or slight increase in point bar formation/enlargement 	 No channel alteration or significant point bar formation/enlargement
	• Riffle/Pool ratio 0.49:1 ; ≥1.51:1	 Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1 	 Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1 	Riffle/Pool ratio 0.9-1.1:1
~	 Summer afternoon water temperature > 27°C 	 Summer afternoon water temperature 24-27°C 	 Summer afternoon water temperature 20-24°C 	• Summer afternoon water temperature < 20°C
Point range	□ 0 □ 1 □ 2	□ 3 ⊑∕ 4	□ 5 □ 6	□ 7 □ 8
un in the second	 Substrate fouling level: High (> 50%) 	 Substrate fouling level: Moderate (21-50%) 	 \$ubstrate fouling level: Very light (11-20%) 	Substrate fouling level: Rock underside (0-10%)
Water Quality	 Brown colour TDS: > 150 mg/L 	Grey colour TDS: 101-150 mg/L	 Slightly grey colour TDS: 50-100 mg/L 	Clear flow TDS: < 50 mg/L
Water Quality	 Objects visible to depth < 0.15m below surface 	Objects visible to depth 0.15-0.5m below surface	 Objects visible to depth 0.5-1.0m below surface 	 Objects visible to depth > 1.0m below surface
	 Moderate to strong organic odour 	 Slight to moderate organic odour 	 Slight organic odour 	• No odour
Point range	□ 0 □ 1 □ 2	□ 3 □ 4	₽ 5 ⊏ 6	□ 7 □ 8
Riparian Habitat	 Narrow riparian area of mostly non-woody vegetation 	 Riparian area predominantly wooded but with major localized gaps 	 Forested buffer generally > 31 m wide along major portion of both banks 	 Wide (> 60 m) mature forested buffer along both banks
Conditions	 Canopy coverage: <50% shading (30% for large mainstem areas) 	• Canopy coverage: 50- 60% shading (30-44% for large mainstem areas)	 Canopy coverage: 60-79% shading (45-59% for large mainstem areas) 	 Canopy coverage: >80% shading (> 60% for large mainstem areas)
Point range	□ 0 □ 1	□ 2 □ 3	□ 4 □ 5	□6 □7

Completed by: ______. Checked by: ______

Reach Characteristics	Project Code: 22045	GEO MORPHIX Geomorphology Earth Science Observations
Date: 2022-07-27	Stream/Reach: S(-A-5, Silv	ver creek
Weather: Sunny 24°C	Location: Lunder Rd. F	
Field Staff: AA AV	Watershed/Subwatershed: Flaty children	relk.
UTM (Upstream)	UTM (Downstream)	
Land Use (Table 1) Valley Type (Table 2) Channel Type (Table 3) Channel (Table 3)	Zone Flow Type ble 4) (Table 5)	/idence:
Riparian Vegetation	Aquatic/Instream Vegetation	Water Quality
Dominant Type:Coverage:Channel widthsAge Class (yrs):Encroachmer(Table 6)UUInoneI1-4Immature (<5)(TableSpecies:Image: FragmentedImage: 4-10Image: Established (5-30)Image: 2Image: Mixed Class (yrs):Image: ContinuousImage: 2Image: ContinuousImage: Mixed Class (yrs):Image: ContinuousImage: 2Image: Class (yrs):Image: ContinuousImage: 2Image: Class (yrs):Image: Class (yrs):I		Odour (Table 16)
Channel Characteristics		
	ber of Channels Clay/Silt Sand Gravel	Cobble Boulder Parent Rootlets
(Table 9) (Table 10) (Table 11) (Table 11)	ole 12) Riffle Substrate	
Entrenchment Type of Bank Failure Downs's Classification	Pool Substrate	
(Table 13) 2 (Table 14) 2 (Table 15)	Bank Material 🖂 🗖 🗆	
Bankfull Width (m) 4.59 4.0 6.84 Wetted Width (m)	2.46 1.28 2.4 3.6 Bank Angle Bank Erd $0 - 30$ $0 - 30$ $0 < 5%$ 0.47 $0 = 30 - 60$ $0 = 5 - 30$	Notes:
Bankfull Depth (m)	0.14 0.25 0.17 0.47 $0.30-60$ $0.5-30$	
Riffle/Pool Spacing (m) % Riffles: % Pools:	Meander Amplitude:	100%
Pool Depth (m)		
Velocity (m/s) 0.09 0.12 0.04 Wiffle ball / ADV	/ Estimated	
	An	

-

Completed by: <u>AA</u>

Checked by: ___

Date:	ho	12-07-27	Strea	am/	Rea	ch:						5	G	A	/	7	_				
Weather:	Si	nny 77°C	Loca	tion	:								1	1	R	d	P	Ve	m	the	Ne
Field Staff:		AA YV.	Wate	ersh	ed/	Sul	owa	tersh	ed:		F	JI DI	re	hi	14	0.	<u>) </u> (he	08	2	10
Features			Site S	Sket	ch:			he	4	h						1×	-	IN	di	Ve	14
Reach break						1	R	REC					4		4		1				NI
Cross-section											3	in	X			6	S.C.				
Flow direction											K/	12	1	1			<u> </u>				
										1	λ	2	/	r		_					
Medial bar				_					X	1	C	X									_
Eroded bank		-					4		1	1	X.		F.x	5							
Undercut bank						1		1	K	ΛĘ	P.	54.	~/	2							
XXXXX Rip rap/stabilizati	on/gat	bion			, i		1	4	×.	X	1sh	a	9	-							
->>>> Leaning tree	. 5				Y	X	19	£		0	5	THE.									
KXX Fence					1	51	101	Pal		17	6.9	11									
Culvert/outfall					K	12		Cer	el		1000										
Swamp/wetland					1		C	X	~p,1	m		in									
₩₩₩ Grasses						1	1	F													
Tree Tree						P	11														
Instream log/tree						1						1	the						(1	
※ ※ Woody debris只 Station location						X	-1	- 0	NC	Hec	1 cu	-	111	-	10	L.	ev	d	ept	1	>.
Vegetated island				10	2.	A	t	tx-	pc	WV.	pu	rel	-	9							
low Type							A														
H1 Standing water						-1		V													
H2 Scarcely perceptil	le flov	v				77	-	A													
H3 Smooth surface fl				1			1	A													
H4 Upwelling						T	E	HT-		-											
H5 Rippled						1	-	/													
H6 Unbroken standin	g wave	e				1	(7	- 14.2	4m	. ti	11/	SCAV	id/	gre	ave	\dagger					
H7 Broken standing v	vave						AL														
H8 Chute						Y	21	6													
H9 Free fall							K		2							8	-20				
ubstrate						mit	-	X	1	4	ex	D 10	000	10	\geq	eq.					
S1 Silt	S6	Small boulder		V	e	NS.		El	T												
S2 Sand S3 Gravel	S7	Large boulder		S	(0)	1			1	-											
S4 Small cobble	58 59	Bimodal Bedrock/till					F	PK+	-De	pri	X	iah	n								
S5 Large cobble	39	Bedrock/ull						XX					``								
ther							-1	+	XB	F3	-										
M Benchmark	EP	Erosion pin					X	EI							om						
S Backsight	RB	Rebar						R. S	X			11	N	1	~			6	(-	A	2
S Downstream	US	Upstream			B	an	(> 1	12	K-	40						1	7		1	2
/DJ Woody debris jam	TR	Terrace			V		10)	Q.	1	1	5	A	u	N	540	er	N			7	
WC Valley wall contact	FC	Flood chute							1	D	1	50			Scal	e:			1		
OS Bottom of slope	FP	Flood plain	Addi		1.0					FF			-								

- Valley wall contact along both sides of reach - exposed till predominant through channel. - large undercets common. - exposed tree reads common

Completed by: _____ Checked by: _

GEO MORPHIX

)

)

Rapid Geomorphic Assessment

Project Code:22045

Date:	202	2-07-77	Strea	am/Reach:	SC-A	-7_	Silver	Creek
Weather:	S	Mn. 1770	C Wate	ershed/Subwatersh	ed: Fairchil	daci	Pak	
Field Staff:	 //	AAU AV	Loca	tion:	Lundun	Val "	Run	Afara.
	0	/// //V.			Lynaun	1		100001
Process	No	T	eomorpholo	gical Indicator	chartshat of a mean		sent?	Factor Value
	No.	Description	2			Yes	No	Value
	.1	Lobate bar	:00	enter a conservation of			1	11.
	2	Coarse materials in	fiffies embed	laea		i	1	- 7/-
Evidence of Aggradation	3	Siltation in pools Medial bars				1		- ~/
(AI)	4		arc	······································		1-		-
	6	Accretion on point b Poor longitudinal sor		matariala		1	1	
	7	Deposition in the over		Indienais		1		-
	/				Sum of indices =	11	3	0 53
		1			Sum of indices =	- 1	5	0.57
	1	Exposed bridge footi			·	N/	A	_
	2	Exposed sanitary / s	torm sewer ,	/ pipeline / etc.	-	NI	A	
T.	3	Elevated storm sewe	· · · ·			N	/A	2,
Evidence of	4	Undermined gabion				N	/A)/E
Degradation	5			erts / storm sewer out	lets	N	A	
(DI)	6	Cut face on bar form		1	5.	l		_
	7	Head cutting due to						_
	8	Terrace cut through					1	_
	9	Suspended armour I				1		
	10	Channel worn into u	ndisturbed o	verburden / bedrock		1		
		-		1	Sum of indices =	13	2	0.6
	1	Fallen / leaning tree	s / fence pos	sts / etc.		ŀ		
	2	Occurrence of large	organic debr	is	i incom			1.
	3	Exposed tree roots				1		61
	4	Basal scour on inside	e meander b	ends	n - 14	· 1		1/8
Evidence of Widening	5	Basal scour on both	sides of chai	nnel through riffle	s. 2	I		
(WI)	6	Outflanked gabion b	askets / con	crete walls / etc.		NI	IA	
	7	Length of basal scou	and the second se				1	
	8			ied pipe / cable / etc.			1	
	9	Fracture lines along				1		
	10	Exposed building fou	Indation		-	N.	/A	
				<u>.</u>	Sum of indices =	6	- 2	6.75
	1	Formation of chute(s	5)			1		
Tuiden	2	Single thread channe		e channel	6		1	
Evidence of Planimetric	3	Evolution of pool-riff		and and a second second descent second s			1	1 1
Form	4	Cut-off channel(s)		and the second	and the second		1	7
Adjustment	5	Formation of island(s)					- /
(PI)	6	Thalweg alignment o		with meander form			- 1	1
	7	Bar forms poorly for						1
		· · · · ·		-	Sum of indices =	0	7	0
		}						
Additional notes	s:			Stability Ind	$dex(SI) = (AI + \Gamma)$)I+WI+	PI)/4 =	AUV
Additional notes	5:		Condition		dex (SI) = (AI+D In Transition/St		PI)/4 = In Adju	0110

 Ombody
 Ombody<

)

Rapid Stream Assessment Technique

Project Code: 22045

Date:	202-07-27	Stream/Reach:		SC-A-7	
Neather:	SUDAY 20°C	Location:		Lundenk	d. Brantford
ield Staff:	AA AV.	Watershed/Subwater	rshed:	Fairchilds	Creek
Evaluation Category	Poor	Fair		Good	Excellent
	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	stableInfrequence	o of bank network ent signs of bank ng, slumping or	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure
Channel	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m 	 Outer b m abov 1.5 m a for large 	bend areas stable ank height 0.6-0.9 e stream bank (1.2- bove stream bank e mainstem areas) verhang 0.6-0.8 m	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m
Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	predom large, s scarce • 2-3 rece	d tree roots inantly old and maller young roots ent large tree falls eam mile	 Exposed tree roots old, large and woody Generally 0-1 recent large tree falls per stream mile
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	general	1/3 of bank is ly highly resistant bil matrix or material	 Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material
	 Channel cross-section is generally trapezoidally- shaped 	 Channel cross-section is generally trapezoidally- shaped 		l cross-section is ly V- or U-shaped	 Channel cross-section is generally V- or U-shaped
Point range	□□□□2	□ 3 □ 4 □ 5	⊏ 6	5	□ 9 □ 10 □ 11
	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60- 85% embedded for large mainstem areas) 	59% en	embedded (35- nbedded for large em areas)	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	pools • Pool sul	te number of deep bstrate composition 5 sand-silt	 High number of deep pool (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate compositio <30% sand-silt
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	and/or '	bed streak marks "banana"-shaped nt deposits non	 Streambed streak marks and/or "banana"-shaped sediment deposits absent
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 uncomm Small Ic fresh satisfies 	arge sand deposits non in channel ocalized areas of and deposits along ow banks	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	well-veg	ars small and stable, getated and/or ed with little or no and	 Point bars few, small and stable, well-vegetated and/or armoured with littl or no fresh sand
Point range		□ 3 ↓ 4	E	5 🗆 6	C 7 C 8

Date:	2022-07-27	Reach: SC-1	A-2 Project Code:	22045	
Evaluation Category	Poor	Fair	Good	Excellent	
	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	 Wetted perimeter 40- 60% of bottom channel width (45-65% for large mainstem areas) 	 Wetted perimeter 61-85% of bottom channel width (66-90% for large mainstem areas) 	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas) 	
	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools present, riffles and runs dominant. Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffles, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water) 	
Physical Instream	 Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble 	
Habitat	 Riffle depth < 10 cm for large mainstem areas 	 Riffle depth 10-15 cm for large mainstem areas 	 Riffle depth 15-20 cm for large mainstem areas 	 Riffle depth > 20 cm for large mainstem areas 	
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	 Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure 	 Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure 	 Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure 	
	 Extensive channel alteration and/or point bar formation/enlargement 	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	Slight amount of channel alteration and/or slight increase in point bar formation/enlargement	No channel alteration or significant point bar formation/enlargement	
	 Riffle/Pool ratio 0.49:1 ; ≥1.51:1 	• Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1	.69:1 ; 1.31-1.5:1 ; 1.11-1.3:1		
	 Summer afternoon water temperature > 27°C 	 Summer afternoon water temperature 24-27°C 	 Summer afternoon water temperature 20-24°C 	 Summer afternoon water temperature < 20°C 	
Point range	□ 0 □ 1 □ 2	□ 3 □ 4	☑ 5 ⊑ 6	□ 7 □ 8	
	 Substrate fouling level: High (> 50%) 	 Substrate fouling level: Moderate (21-50%) 	• Substrate fouling level: Very light (11-20%)	Substrate fouling level: Rock underside (0-10%)	
Water Quality	 Brown colour TDS: > 150 mg/L 	Grey colourTDS: 101-150 mg/L	Slightly grey colour TDS: 50-100 mg/L	Clear flow TDS: < 50 mg/L	
mater Quality	 Objects visible to depth < 0.15m below surface 	 Objects visible to depth 0.15-0.5m below surface 	• Objects visible to depth 0.5-1.0m below surface	Objects visible to depth > 1.0m below surface	
	 Moderate to strong organic odour 	 Slight to moderate organic odour 	Slight organic odour	• No odour	
Point range	□ 0 □ 1 □ 2	□ 3 □ 4		□ 7 □ 8	
Riparian Habitat	 Narrow riparian area of mostly non-woody vegetation 	 Riparian area predominantly wooded but with major localized gaps 	 Forested buffer generally > 31 m wide along major portion of both banks 	 Wide (> 60 m) mature forested buffer along both banks 	
Conditions	 Canopy coverage: <50% shading (30% for large mainstem areas) 	Canopy coverage: 50- 60% shading (30-44% for large mainstem areas)	 Canopy coverage: 60-79% shading (45-59% for large mainstem areas) 	 Canopy coverage: >80% shading (> 60% for large mainstem areas) 	
Point range	□ 0 □ 1		☑ 4 □ 5	□ 6 □ 7	
otal overall s	core (0-42) = 72	Poor (<13) Fa	air (13-24) Good (25-3	34) Excellent (>35)	

Completed by: _____ Checked by: _____

Reach Characteristics

Project Code:	220	145
---------------	-----	-----

GEO	м	0	R	Ρ	Н	T	Х
	Earth	orpholo Science vations	ЭУ				

Date: 2022-07-27	Stream/Reach:	SC-A-	7 Silv	the Creek		
Weather: Sunny 22°C	Location:	Lynden R			,	
Field Staff:	Watershed/Subwatershed:	Fairchilds	rwork	M MORAL.		
UTM (Upstream)	UTM (Downstream)	FairOrnas	UUA			
Land Use (Table 1) Valley Type (Table 2) Channel Type (Table 3) Channel Type (Table 3)	Zone Flow Type ble 4) (Table 5)	Groundwater	Evider	nce:		
Riparian Vegetation	Aquatic/Instream Veg	etation	W	ater Quality		
Dominant Type: Coverage: Channel widths Age Class (yrs): Encroachmen (Table 6) (Table 6) Image: Species: Image: Species: <th></th> <th>Coverage of Reach (% Density of WD: Low WDJ, Moderate High</th> <th>/50m:</th> <th></th> <th>Table 16) (Table 17)</th> <th></th>		Coverage of Reach (% Density of WD: Low WDJ, Moderate High	/50m:		Table 16) (Table 17)	
Channel Characteristics						
Sinuosity (Type) Sinuosity (Degree) Gradient Num	nber of Channels	Clay/Silt Sand	Gravel C	Cobble Boulder	Parent	Rootlets
(Table 9) 2 (Table 10) 3 (Table 11) 2 (Tab	ole 12) Riffle Substra	te 🛛 🗗				
Entrenchment Type of Bank Failure Downs's Classification	Pool Substra	te 🗗 🗹				
(Table 13) 3 (Table 14) 1/5 (Table 15)	Bank Material					
Bankfull Width (m) 4.622 8.19 8.59 Wetted Width (m)	1.95 1.27 2.45	Bank Angle □ 0 – 30	Bank Erosion	n Notes:		
Bankfull Depth (m) 0.7 Wetted Depth (m) Riffle/Pool Spacing (m) % Riffles: % Pools:	0.31 0.07 0.13 Meander Amplitude:	□ 30 – 60 □ 60 – 90 ☑ Undercu	□ 5 – 30% □ 30 – 60% t □ 60 – 1009			
Pool Depth (m) 0.53 Riffle Length (m) [4.24] Undercuts (m)	Comments:					
Velocity (m/s)	/ Estimated					
		Completed b	y: AA	Checked by	/:	

MORPHIX

)

TAUS

Date:		2022-07-27	Stream	m/Reac	h:				S	C	A-	3				
Weath	er:	SUNNU 22°C	Location:						Lynden Rd., Brantfar							
Field S	taff:	AAAV Watershed/Subwatershed:]	Farchilds Creek.									
Feature			Site S	ketch:	10	ps-	he	an								
×	Reach break			/ MAS	6	·	_									
	Cross-section							1.5								
	Flow direction		- KX	TX.	XBE									N		
\frown	Riffle	37	601 -7	1							_					
	Pool		Slump.													
	Medial bar			1595												
	Eroded bank Undercut bank			10			_									
		appion			1											
	Rip rap/stabilizatior Leaning tree	l/ gabion			1									-		
	Fence				1											
	Culvert/outfall				Stall S	2										
	Swamp/wetland				K	1										
\sim	Grasses			60												
~~~	Tree				-										60 WS	
-	Instream log/tree													Lew to	black	
	Woody debris										1	avoi	2+	100	Non-	
	Station location							N		15	a a	19.1	-	R	XAZ	
	Vegetated island				100	t	. E	K	de		-			1	SIG	
Flow Ty	and the second				TO	V	+	V	121				1	Z.	1	
	Standing water			9	K		1-	R	-	5	Ono;	-	1	1		
H2	Scarcely perceptible	e flow		6	6	1	2		A	10	<	1	1	1	V	
	Smooth surface flow					. /			4		T	1	1		Nek	
H4	Upwelling					4			15	2	2	1	200		14	
Н5	Rippled									NB	7	T V	104		1	
H6	Unbroken standing	wave							17	E			n	11	F	
H7	Broken standing wa	ve										P	137	44	L	
H8	Chute												1 3	AI	X	
H9	Free fall															
Substra													Z			
	Silt	S6 Small boulder											F	Ł		
	Sand	S7 Large boulder											Ŧ			
	Gravel	S8 Bimodal										1A	2/			
	Small cobble	S9 Bedrock/till									1		1/			
	Large cobble										1	Ĩ	7			
Other											No					
	Benchmark	EP Erosion pin									1	1				
	Backsight	<b>RB</b> Rebar									1	1	2			
	Downstream	US Upstream				-41	1-		1-0	1			X			
	Woody debris jam	TR Terrace			151	1	N	VQ	m	stre	the second s	IK	V			
	Valley wall contact	FC Flood chute					V				Sc	ale:		~		
	Bottom of slope	FP Flood plain	Addit	ional No	otes:									1011-1011-1011-1-1-1		
TOS	Top of slope	KP Knick point														

- slopes have more grass/harbaceous than previous reaches (less exposed till) Strom old bank failures.

- narrower we ted width.

- Sand deposits observed on point bais & oreiban is zon. Completed by: _____

# GEO MORPHIX

Date:	20	77-07-7-	Strea	am/Reach:	SC-A-	3		
Weather:	Civ	nu 2-7°	Wate	ershed/Subwaters	shed: Fairch	1 26/	Huk	n
Field Staff:	R	A N.	Loca	tion:	Lundin	RA	Bron	tford
		(	Geomorpholo	gical Indicator	<u> </u>	Pre	sent?	Factor
Process	No.	Description		5		Yes	No	Value
and the second	1	Lobate bar					1	
	2	Coarse materials in	riffles ember	ided				41
Evidence of	3							- /-
Aggradation	4							l
(AI)	5	Accretion on point b	ars			1		
	6	Poor longitudinal so		materials		L	1	-
	7	Deposition in the ov				1		-
					Sum of indices =	4	3	0.57
	1	Exposed bridge foot	ing(s)			A	(A	
	2	Exposed sanitary / s		/ pipeline / etc.			A	-
	3	Elevated storm sew	N	A	31			
	4	Undermined gabion	N	A	1 6			
Evidence of	5	Scour pools downsti		A				
Degradation (DI)	6	Cut face on bar forn	1		-			
	7	Head cutting due to	knickpoint n	nigration			1	-
	8	Terrace cut through					1	-
	9	Suspended armour	1		-			
	10	Channel worn into u	ndisturbed o	verburden / bedroc	k	1		-
				20	Sum of indices =	3	2	0.0
	1	Fallen / leaning tree	s / fence nos	sts / etc			I	1
	2	Occurrence of large				1		
	3	Exposed tree roots	1		- 6%			
	4	Basal scour on insid			- 18			
Evidence of	5	Basal scour on both	1		_			
Widening (WI)	6	Outflanked gabion b	A I	IA \	-			
(***)	7	Length of basal scou				12	i i	-
	8	Exposed length of p			с.		1	-
	9	Fracture lines along				1		-
	10	Exposed building for	and the second			N	A	-
					Sum of indices =	(0	2	675
	1	Formation of chute(	s)				1	
	2	Single thread chann		e channel		-	í	-
Evidence of Planimetric	3	Evolution of pool-rif					1	
Form	4	Cut-off channel(s)					1.	-
Adjustment	5	Formation of island(	s)				1	
(PI)	6	Thalweg alignment		with meander form			1	
	7	Bar forms poorly for	and the second se				1	
	•*•	•••••••••••••••••••••••••••••••••••••••			Sum of indices =	6	7	0
dditional note	s:			Stability I	ndex (SI) = (AI+D	)I+WI+	PI)/4 =	0.40
			Condition	In Regime	In Transition/St			Istment

Completed by: ______ Checked by: _____

(

1

## Rapid Stream Assessment Technique

Date:	707-07-77	Stream/Reach:		oject Code:	20012
Weather:	SIMMI 2701	Location:		DC-A-	20 10 :
Field Staff:	A IN IN IN IN IN		Lynden'		ld., Forontford
Evaluation	KIN DV	Watershed/Subwate	ersned:	Harroha	ds Creek.
Category	Poor	Fair		Good	Excellent
	<ul> <li>&lt; 50% of bank network stable</li> <li>Recent bank sloughing, slumping or failure frequently observed</li> </ul>	<ul> <li>50-70% of bank network stable</li> <li>Recent signs of bank sloughing, slumping or failure fairly common</li> </ul>	stable • Infreque	of bank network Int signs of bank g, slumping or	<ul> <li>&gt; 80% of bank network stable</li> <li>No evidence of bank sloughing, slumping or failure</li> </ul>
Channel	<ul> <li>Stream bend areas highly unstable</li> <li>Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas)</li> <li>Bank overhang &gt; 0.8-1.0 m</li> </ul>	<ul> <li>Stream bend areas unstable</li> <li>Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas)</li> <li>Bank overhang 0.8-0.9m</li> </ul>	Outer ba m above 1.5 m ab for large	oend areas stable ink height 0.6-0.9 stream bank (1.2- oove stream bank mainstem areas) erhang 0.6-0.8 m	<ul> <li>Stream bend areas very stable</li> <li>Height &lt; 0.6 m above stream (&lt; 1.2 m above stream bank for large mainstem areas)</li> <li>Bank overhang &lt; 0.6 m</li> </ul>
Stability	<ul> <li>Young exposed tree roots abundant</li> <li>&gt; 6 recent large tree falls per stream mile</li> </ul>	<ul> <li>Young exposed tree roots common</li> <li>4-5 recent large tree falls per stream mile</li> </ul>	predomir large, sm scarce	tree roots hantly old and haller young roots ht large tree falls m mile	<ul> <li>Exposed tree roots old, large and woody</li> <li>Generally 0-1 recent large tree falls per stream mile</li> </ul>
	<ul> <li>Bottom 1/3 of bank is highly erodible material</li> <li>Plant/soil matrix severely compromised</li> </ul>	<ul> <li>Bottom 1/3 of bank is generally highly erodible material</li> <li>Plant/soil matrix compromised</li> </ul>	<ul> <li>Bottom 1 generally</li> </ul>	/3 of bank is highly resistant matrix or material	<ul> <li>Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material</li> </ul>
	<ul> <li>Channel cross-section is generally trapezoidally- shaped</li> </ul>	<ul> <li>Channel cross-section is generally trapezoidally- shaped</li> </ul>	<ul> <li>Channel or generally</li> </ul>	cross-section is V- or U-shaped	<ul> <li>Channel cross-section is generally V- or U-shaped</li> </ul>
Point range			□ 6	□7 □8	□ 9 □ 10 □ 11
	<ul> <li>&gt; 75% embedded (&gt; 85% embedded for large mainstem areas)</li> </ul>	<ul> <li>50-75% embedded (60- 85% embedded for large mainstem areas)</li> </ul>	• 25-49% e 59% emb mainstem	mbedded (35- edded for large areas)	<ul> <li>Riffle embeddedness &lt; 25% sand-silt (&lt; 35% embedded for large mainstem areas)</li> </ul>
	composition >81% sand- silt	<ul> <li>Pool substrate</li> <li>composition</li> <li>60-80% sand-silt</li> </ul>	pools	number of deep rate composition and-silt	<ul> <li>High number of deep pools (&gt; 61 cm deep) (&gt; 122 cm deep for large mainstem areas)</li> <li>Pool substrate composition &lt;30% sand-silt</li> </ul>
Channel Scouring/ Sediment Deposition	sediment deposits common	<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits common</li> </ul>	<ul> <li>Streambed and/or "ba sediment d uncommor</li> </ul>		<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits absent</li> </ul>
	<ul> <li>deposits very common in channel</li> <li>Moderate to heavy sand deposition along major portion of overbank area</li> </ul>	channel Small localized areas of fresh sand deposits along top of low banks	uncommor Small local	ized areas of deposits along	<ul> <li>Fresh, large sand deposits rare or absent from channel</li> <li>No evidence of fresh sediment deposition on overbank</li> </ul>
	<ul> <li>Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand</li> </ul>	Point bars common, moderate to large and unstable with high amount of fresh sand	well-vegeta	small and stable, ated and/or with little or no	<ul> <li>Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand</li> </ul>
oint range			T R	5 🗆 6	□7 □ 8

)

Date:	2022-07-27	Reach: SC-A	-3 Project Code:	22045
Evaluation Category	Poor	Fair	Good	Excellent
	<ul> <li>Wetted perimeter &lt; 40% of bottom channel width (&lt; 45% for large mainstem areas)</li> </ul>	<ul> <li>Wetted perimeter 40- 60% of bottom channel width (45-65% for large mainstem areas)</li> </ul>	<ul> <li>Wetted perimeter 61-85% of bottom channel width (66-90% for large mainstem areas)</li> </ul>	<ul> <li>Wetted perimeter &gt; 85% of bottom channel width (1 90% for large mainstem areas)</li> </ul>
	<ul> <li>Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low)</li> </ul>	<ul> <li>Few pools present, riffles and runs dominant.</li> <li>Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate)</li> </ul>	<ul> <li>Good mix between riffles, runs and pools</li> <li>Relatively diverse velocity and depth of flow</li> </ul>	<ul> <li>Riffles, runs and pool habitat present</li> <li>Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)</li> </ul>
Physical Instream	<ul> <li>Riffle substrate composition: predominantly gravel with high amount of sand</li> <li>&lt; 5% cobble</li> </ul>	<ul> <li>Riffle substrate composition: predominantly small cobble, gravel and sand</li> <li>5-24% cobble</li> </ul>	<ul> <li>Riffle substrate composition: good mix of gravel, cobble, and rubble material</li> <li>25-49% cobble</li> </ul>	<ul> <li>Riffle substrate composition: cobble, gravel, rubble, boulder mi with little sand</li> <li>&gt; 50% cobble</li> </ul>
Habitat	• Riffle depth < 10 cm for large mainstem areas	<ul> <li>Riffle depth 10-15 cm for large mainstem areas</li> </ul>	<ul> <li>Riffle depth 15-20 cm for large mainstem areas</li> </ul>	<ul> <li>Riffle depth &gt; 20 cm for large mainstem areas</li> </ul>
	<ul> <li>Large pools generally &lt; 30 cm deep (&lt; 61 cm for large mainstem areas) and devoid of overhead cover/structure</li> </ul>	Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure	Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure	<ul> <li>Large pools generally &gt; 61 cm deep (&gt; 122 cm for large mainstem areas) wit good overhead cover/structure</li> </ul>
	<ul> <li>Extensive channel alteration and/or point bar formation/enlargement</li> </ul>	<ul> <li>Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement</li> </ul>	Slight amount of channel alteration and/or slight increase in point bar formation/enlargement	<ul> <li>No channel alteration or significant point bar formation/enlargement</li> </ul>
	• Riffle/Pool ratio 0.49:1 ; ≥1.51:1	• Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1	• Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1	• Riffle/Pool ratio 0.9-1.1:1
	<ul> <li>Summer afternoon water temperature &gt; 27°C</li> </ul>	<ul> <li>Summer afternoon water temperature 24-27°C</li> </ul>	<ul> <li>Summer afternoon water temperature 20-24°C</li> </ul>	<ul> <li>Summer afternoon water temperature &lt; 20°C</li> </ul>
Point range	□ 0 □ 1 □ 2	□3 ☑ 4	□ 5 □ 6	□ 7 □ 8
	<ul> <li>Substrate fouling level: High (&gt; 50%)</li> </ul>	<ul> <li>Substrate fouling level: Moderate (21-50%)</li> </ul>	Substrate fouling level: Very light (11-20%)	Substrate fouling level: Rock underside (0-10%)
Water Quality	<ul> <li>Brown colour</li> <li>TDS: &gt; 150 mg/L</li> </ul>	• Grey colour • TDS: 101-150 mg/L	Slightly grey colour     TDS: 50-100 mg/L	Clear flow     TDS: < 50 mg/L
Water Quality	<ul> <li>Objects visible to depth</li> <li>&lt; 0.15m below surface</li> </ul>	<ul> <li>Objects visible to depth 0.15-0.5m below surface</li> </ul>	• Objects visible to depth 0.5-1.0m below surface	Objects visible to depth     > 1.0m below surface
	<ul> <li>Moderate to strong organic odour</li> </ul>	<ul> <li>Slight to moderate organic odour</li> </ul>	Slight organic odour	No odour
Point range	□ 0 □ 1 □ 2	□ 3 □ 4	□ 5 ⊄ 6	□ 7 □ 8
Riparian Habitat	<ul> <li>Narrow riparian area of mostly non-woody vegetation</li> </ul>	<ul> <li>Riparian area predominantly wooded but with major localized gaps</li> </ul>	<ul> <li>Forested buffer generally</li> <li>&gt; 31 m wide along major portion of both banks</li> </ul>	<ul> <li>Wide (&gt; 60 m) mature forested buffer along both banks</li> </ul>
Conditions	<ul> <li>Canopy coverage: &lt;50% shading (30% for large mainstem areas)</li> </ul>	Canopy coverage: 50- 60% shading (30-44% for large mainstem areas)	Canopy coverage: 60-79% shading (45-59% for large mainstem areas)	<ul> <li>Canopy coverage: &gt;80% shading (&gt; 60% for large mainstem areas)</li> </ul>
Point range	□ 0 □ 1	□ 2 □ 3	C 4 C 5	□ 6 □ 7

Completed by: _____ Checked by: ____

	20	all
Project Code:	LL	045

GEO

MORPHIX

Reach Chara	acteristics		Project Co	de: 220	45			Geomorpholog Earth Science Observations	(	
Date:	202-07-27	Stream	/Reach:	SC-A-	3 (	Silve	ev Cr	eck		
Weather:	SUNNY 22°C	Locatio	n:	Lund	in	Rd.	Bro	intfe	d	
Field Staff:	AA AV.	Waters	hed/Subwatershed:	Farrel	plin	S C	pert			
UTM (Upstream)		UTM (D	)ownstream)			Ŀ	5			
Land Use (Table 1)	Valley Type     Channel Type     Channel       (Table 2)     (Table 3)     (Table 3)	Zone /	Flow Type       (Table 5)	Grour	Idwater	E	vidence:			
<b>Riparian Vegetation</b>			Aquatic/Instream Ve	getation			Water Qu	ality		
(Table 6) 1/4 Species:	verage:Channel widthsAge Class (yrs):EncroachmerNone1-4Immature (<5)(TableFragmented4-10Established (5-30)2Continuous> 10Mature (>30)	7)	Type (Table8)       K/A         Woody Debris       Present in Cutban         Present in Cutban       Present in Channe         Not Present       Not Present		WD: WDJ/5	0m:		Odour (T		
Channel Characterist	ics									
Sinuosity (Type)	Sinuosity (Degree) Gradient Num	ber of Cl	hannels	Clay/Silt	Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9)	(Table 10) (Table 11) (Table 11)	ole 12)	Riffle Substr	ate 🖻	2	2	1			
Entrenchment	Type of Bank Failure Downs's Classification	T }	Pool Substr	ate 🖻	2					
(Table 13)	(Table 14) 12/5 (Table 15)		Bank Materia	9	ď					9
Bankfull Width (m)	3.65 4.31 8.66 Wetted Width (m)	1.8	1.1 1.31		<b>Angle</b> – 30	<b>Bank Er</b> □ < 5%		Notes:		
Bankfull Depth (m)	1 6.83 1.1 Wetted Depth (m)	0.16	0.1 0.07	,	0 - 60	□ 5 – 3 				
Riffle/Pool Spacing (I	m) % Riffles: % Pools:	Mea	nder Amplitude:		0 – 90 ndercut	□ 30 – □ 60 –				
Pool Depth (m)	0.6 Riffle Length (m) 12.5 Undercuts (m)	035	Comments:							
Velocity (m/s)	0.15 0.2 Wiffle ball / ADV	/ Estima	ted			-				
		un esta (n. 1. en 1610), en 14		Comple	tod by	AI	X	backad by		

Completed by: <u>9\</u>

Checked by: ____

Completed by: _____ Checked by: _

GEO MORPHIX

]

Date:	2022-07-27	Stream/Reach:	SC-A-10			
Weather:	Sunnu 24°C	Location:	Lundon Od Bradford			
Field Staff:	AA AV	Watershed/Subwatershed:	Fairchilds (veek			
Features		Site Sketch: UPStream				
Reach break		Site Sketch: Upstream				
Cross-section		1 - Scan Dool no	Tim. is gabien			
Flow direction		Man I I I I I I I I I I I I I I I I I I I	Chriskets.			
Riffle		Mest copper.	N N			
Pool		100 001				
Medial bar		X X BT V				
####### Eroded bank						
Undercut bank		Like Srap 1				
Rip rap/stabilizati	on/gabion	Varel				
Leaning tree						
······································		1 +-51-59				
Culvert/outfall						
Swamp/wetland		The Ch				
₩₩ Grasses						
C Tree		We 1 The	0.5 5.			
Instream log/tree		ST AN A	5 5			
		14 / 6				
		5 5 52 +2				
Vegetated island		Le T I				
H1 Standing water						
H2 Scarcely perceptib	le flow		3			
H3 Smooth surface flo			Sel eff			
H4 Upwelling		2	3			
H5 Rippled		50	al-s3 bigh			
H6 Unbroken standing	Wave	deces the	a filta			
H7 Broken standing w		Hu Long	GP			
H8 Chute			SAG			
H9 Free fall		Č	VWC			
ubstrate						
<b>S1</b> Silt	S6 Small boulder					
S2 Sand	<b>S7</b> Large boulder		51-53-577			
S3 Gravel	S8 Bimodal		25-2-25			
S4 Small cobble	S9 Bedrock/till					
S5 Large cobble			Q 63 1 10			
ther			E A A			
Benchmark	EP Erosion pin		6 B Field			
Backsight	RB Rebar		E B Anobel			
Downstream	US Upstream	Fairchilds	A Sto			
DJ Woody debris jam	TR Terrace	hill.	O IN A OR			
VC Valley wall contact	FC Flood chute	Ct. K	Scale:			
S Bottom of slope	FP Flood plain	Additional Notes:	e ocare.			
S Top of slope	KP Knick point		*			

- predominantly vins, few pools/villes. - vallay wall contact in some locations. - exposed clay evident in channel /banks - siltation common ~ 0. Man in some locations.

GEO	м	0	R	Ρ	н	۱	Х

#### **Rapid Geomorphic Assessment** Project Code: 7 204 Date: Stream/Reach: Weather: Watershed/Subwatershed: V-PPC Field Staff: Location: ON Geomorphological Indicator Present? Factor Process Value No. Description Yes No 1 Lobate bar 2 Coarse materials in riffles embedded 3 Siltation in pools Evidence of Aggradation 4 Medial bars (AI) 5 Accretion on point bars 6 Poor longitudinal sorting of bed materials 7 Deposition in the overbank zone $\overline{a}$ 4 Sum of indices = 0.43 Exposed bridge footing(s) 1 Exposed sanitary / storm sewer / pipeline / etc. 2 N 1A 3 Elevated storm sewer outfall(s) 1A 4 Undermined gabion baskets / concrete aprons / etc. Evidence of 5 Scour pools downstream of culverts / storm sewer outlets Degradation 6 Cut face on bar forms (DI) 7 Head cutting due to knickpoint migration 8 Terrace cut through older bar material 9 Suspended armour layer visible in bank 1 10 Channel worn into undisturbed overburden / bedrock 1 2 Sum of indices = E 0.625 1 Fallen / leaning trees / fence posts / etc. ١ 2 Occurrence of large organic debris 1 3 Exposed tree roots A 4 Basal scour on inside meander bends 1 Evidence of Basal scour on both sides of channel through riffle 1 5 Widening 6 Outflanked gabion baskets / concrete walls / etc. (WI) Length of basal scour >50% through subject reach 7 11 8 Exposed length of previously buried pipe / cable / etc. A N 9 Fracture lines along top of bank 1000 10 Exposed building foundation 1A Sum of indices = 75 6. 0 Formation of chute(s) 1 2 Single thread channel to multiple channel Evidence of 3 Evolution of pool-riffle form to low bed relief form Planimetric Form 4 Cut-off channel(s) Adjustment 5 Formation of island(s) (PI) 6 Thalweg alignment out of phase with meander form 7 Bar forms poorly formed / reworked / removed Sum of indices = 6 Additional notes: Stability Index (SI) = (AI+DI+WI+PI)/4 = 0.45Condition **In Regime** In Transition/Stress **In Adjustment**

SI score =

□ 0.00 - 0.20

Completed by: _____ Checked by: _____

0.21 - 0.40

0.41

1

## Rapid Stream Assessment Technique

Project Code: 22045

Date:	20207-27	Stream/Reach:		SC-A-6	Silver Creek	
Weather:	SIMPY 24°C	Location:		d. Brantfad		
Field Staff:	AA AV.	Watershed/Subwatershed:				
Evaluation Category	Poor	Fair		Good	Excellent	
	<ul> <li>&lt; 50% of bank network stable</li> <li>Recent bank sloughing, slumping or failure frequently observed</li> </ul>	<ul> <li>50-70% of bank network stable</li> <li>Recent signs of bank sloughing, slumping or failure fairly common</li> </ul>	stable • Infreque	o of bank network ent signs of bank ng, slumping or	<ul> <li>&gt; 80% of bank network stable</li> <li>No evidence of bank sloughing, slumping or failure</li> </ul>	
Channel	<ul> <li>Stream bend areas highly unstable</li> <li>Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas)</li> <li>Bank overhang &gt; 0.8-1.0 m</li> </ul>	<ul> <li>Stream bend areas unstable</li> <li>Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas)</li> <li>Bank overhang 0.8-0.9m</li> </ul>	<ul> <li>Outer b m above 1.5 m a for large</li> </ul>	bend areas stable ank height 0.6-0.9 e stream bank (1.2- bove stream bank e mainstem areas) verhang 0.6-0.8 m	<ul> <li>Stream bend areas very stable</li> <li>Height &lt; 0.6 m above stream (&lt; 1.2 m above stream bank for large mainstem areas)</li> <li>Bank overhang &lt; 0.6 m</li> </ul>	
Stability	<ul> <li>Young exposed tree roots abundant</li> <li>&gt; 6 recent large tree falls per stream mile</li> </ul>	<ul> <li>Young exposed tree roots common</li> <li>4-5 recent large tree falls per stream mile</li> </ul>	predom large, si scarce • 2-3 rece	d tree roots inantly old and maller young roots ent large tree falls eam mile	<ul> <li>Exposed tree roots old, large and woody</li> <li>Generally 0-1 recent large tree falls per stream mile</li> </ul>	
	<ul> <li>Bottom 1/3 of bank is highly erodible material</li> <li>Plant/soil matrix severely compromised</li> </ul>	<ul> <li>Bottom 1/3 of bank is generally highly erodible material</li> <li>Plant/soil matrix compromised</li> </ul>	general	1/3 of bank is ly highly resistant il matrix or material	<ul> <li>Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material</li> </ul>	
	<ul> <li>Channel cross-section is generally trapezoidally- shaped</li> </ul>	<ul> <li>Channel cross-section is generally trapezoidally- shaped</li> </ul>		l cross-section is ly V- or U-shaped	<ul> <li>Channel cross-section is generally V- or U-shaped</li> </ul>	
Point range	□ 0 □ 1 □ 2	□ 3 □ 4 🖬 5	⊏ 6	5 <b>C 7 C 8</b>	□ 9 □ 10 □ 11	
	<ul> <li>&gt; 75% embedded (&gt; 85% embedded for large mainstem areas)</li> </ul>	<ul> <li>50-75% embedded (60- 85% embedded for large mainstem areas)</li> </ul>	59% en	embedded (35- nbedded for large em areas)	<ul> <li>Riffle embeddedness &lt; 25% sand-silt (&lt; 35% embedded for large mainstem areas)</li> </ul>	
	<ul> <li>Few, if any, deep pools</li> <li>Pool substrate composition &gt;81% sand- silt</li> </ul>	<ul> <li>Low to moderate number of deep pools</li> <li>Pool substrate composition 60-80% sand-silt</li> </ul>	pools • Pool sub	te number of deep ostrate composition o sand-silt	<ul> <li>High number of deep poo (&gt; 61 cm deep) (&gt; 122 cm deep for large mainstem areas)</li> <li>Pool substrate compositio &lt;30% sand-silt</li> </ul>	
Channel Scouring/ Sediment Deposition	<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits common</li> </ul>	<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits common</li> </ul>	and/or `	bed streak marks "banana"-shaped nt deposits non	<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits absent</li> </ul>	
	<ul> <li>Fresh, large sand deposits very common in channel</li> <li>Moderate to heavy sand deposition along major portion of overbank area</li> </ul>	<ul> <li>Fresh, large sand deposits common in channel</li> <li>Small localized areas of fresh sand deposits a ong top of low banks</li> </ul>	uncomn • Small Ic fresh sa	arge sand deposits non in channel ocalized areas of and deposits along ow banks	<ul> <li>Fresh, large sand deposits rare or absent from channel</li> <li>No evidence of fresh sediment deposition on overbank</li> </ul>	
	<ul> <li>Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand</li> </ul>	<ul> <li>Point bars common, moderate to large and unstable with high amount of fresh sand</li> </ul>	well-veg	ars small and stable, getated and/or ed with little or no and	<ul> <li>Point bars few, small and stable, well-vegetated and/or armoured with littl or no fresh sand</li> </ul>	
Point range			Δ	5 [ 6	□ 7 □ 8	

Evaluation	2022-07-27	Reach: SC-A	Project Code	e: 22045
Category	Poor	Fair	Good	Excellent
	<ul> <li>Wetted perimeter &lt; 40% of bottom channel width (&lt; 45% for large mainstem areas)</li> </ul>	60% of bottom channel width (45-65% for large mainstem areas)	e (66-90% for large mainstem areas)	<ul> <li>Wetted perimeter &gt; 85% of bottom channel width (&gt; 90% for large mainstem areas)</li> </ul>
	<ul> <li>Dominated by one habitative type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low)</li> <li>Riffle substrate</li> </ul>	<ul> <li>and runs dominant.</li> <li>Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate)</li> </ul>	<ul> <li>s Good mix between riffles, runs and pools</li> <li>Relatively diverse velocity and depth of flow</li> </ul>	<ul> <li>Riffles, runs and pool habitat present</li> <li>Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)</li> </ul>
Physical Instream Habitat	<ul> <li>Riffle substrate composition: predominantly gravel with high amount of sand</li> <li>&lt; 5% cobble</li> <li>Riffle depth &lt; 10 cm for</li> </ul>	• 5-24% cobble	<ul> <li>Riffle substrate composition: good mix of gravel, cobble, and rubble material</li> <li>25-49% cobble</li> </ul>	<ul> <li>Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand</li> <li>&gt; 50% cobble</li> </ul>
	large mainstem areas <ul> <li>Large pools generally &lt;</li> </ul>	Riffle depth 10-15 cm for large mainstem areas	large mainstem areas	<ul> <li>Riffle depth &gt; 20 cm for large mainstem areas</li> </ul>
	30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure	<ul> <li>Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure</li> </ul>	cm deep (91-122 cm for large mainstem areas) with	<ul> <li>Large pools generally &gt; 61 cm deep (&gt; 122 cm for large mainstem areas) with good overhead cover/structure</li> </ul>
	Extensive channel alteration and/or point bar formation/enlargement	<ul> <li>Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement</li> </ul>	Slight amount of channel	No channel alteration or significant point bar formation/enlargement
	Riffle/Pool ratio 0.49:1 ≥1.51:1     Summer afternoon water	• Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1	• Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1	• Riffle/Pool ratio 0.9-1.1:1
	temperature > 27°C	<ul> <li>Summer afternoon water temperature 24-27°C</li> </ul>	<ul> <li>Summer afternoon water temperature 20-24°C</li> </ul>	• Summer afternoon water temperature < 20°C
Point range		□3□4	☑ 5 □ 6	
	Brown ask	• Substrate fouling level: Moderate (21-50%)	Substrate fouling level: Very light (11-20%)	• Substrate fouling level: Rock underside (0-10%)
ater Quality	• TDS: > 150 mg/L	Grey colour     TDS: 101-150 mg/L	Slightly grey colour	Clear flow     TDS: < 50 mg/L
	V U.ISIII Delow surface	Objects visible to depth     0.15-0.5m below surface	011	<ul> <li>Objects visible to depth</li> <li>&gt; 1.0m below surface</li> </ul>
	organic odour	<ul> <li>Slight to moderate organic odour</li> </ul>		No odour
oint range		□3□4	☑ 5 ⊑ 6	
Riparian Habitat –	mostly non-woody vegetation	<ul> <li>Riparian area predominantly wooded but with major localized gaps</li> </ul>	<ul> <li>Forested buffer generally</li> <li>&gt; 31 m wide along major portion of both banks</li> </ul>	• Wide (> 60 m) mature forested buffer along both banks
Conditions	So % shading (30% for	Canopy coverage: 50- 60% shading (30-44%) for large mainstem areas)	• Qanopy coverage: 60-79% shading (45-59% for large mainstem areas)	<ul> <li>Canopy coverage:</li> <li>&gt;80% shading (&gt; 60% for large mainstem areas)</li> </ul>
pint range	□ 0 □ 1		☑ 4 ⊑ 5	□ 6 □ 7
al overall sc	ore (0-42) = 24	Poor (<13) Fai	ir (13-24) Good (25-34	

Completed by: _____ Checked by: ____

**Reach Characteristics** 

Project Code: 27	2045
------------------	------

GEO MORPHIX

Geomorphology Earth Science Observations

Date: 757-07-77	Stream/Reach:	C	-C-A	10	C.	1.01.0	Long M		
	Location:	<u>(</u>	SC Fr	0		100 A	Veek.		
Weather: Sunny 24°C			inder			antfo	VON		
Field Staff:	Watershed/Subwaters	ned:	air ch	rilds	s Ur	eek.	805-8989-00-00-00-00-00-00-00-00-00-00-00-00-00		
UTM (Upstream)	UTM (Downstream)					and the second			
Land Use     Valley Type     Channel Type     Channel Type       (Table 1)     (Table 2)     (Table 3)     (Table 3)	Zone     Simple Si		Groun	dwater	Ev	vidence:			
Riparian Vegetation	Aquatic/Instr	eam Vegeta	tion			Water Qu	ality	+	
Dominant Type:       Coverage:       Channel widths       Age Class (yrs):       Encroachmen en	7) Woody Debri	s Cutbank Channel	Density of Normal Density (Normal Density) (Normal D	<b>WD:</b> WDJ/5			Odour (1 Turbidity		
Channel Characteristics									
Sinuosity (Type) Sinuosity (Degree) Gradient Nun	nber of Channels		Clay/Silt	Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9) 2 (Table 10) 2 (Table 11) 2 (Tab	ble 12) Riffle	Substrate		T		P			
Entrenchment Type of Bank Failure Downs's Classification	Pool	l Substrate	5	9					
(Table 13) (Table 14) /2 (Table 15)	Bank N	/laterial	Ð	9	8				
Bankfull Width (m)         6.8         4.55         4.11         Wetted Width (m)	4.1 3.2 3	5.1	Bank	Angle - 30	Bank Er □ < 5%		Notes:		
Bankfull Depth (m)	0.37 0.48	).35		) — 60 ) — 90	□ 5 – 3 □ 30 –				
Riffle/Pool Spacing (m)     % Riffles:     % Pools:	Meander Amplitude			ndercut	₩ 60 -			21 L - 1	
Pool Depth (m)	O ₁ 9 Comments:								Ť
Velocity (m/s) Wiffle ball / ADV	/ / Estimated				N.			10 E	
		na na kaominina dia Galactera			n de la forma de la compañía de la c				

Completed by: _____ Checked by: __

-

)

Date:		202	22-07-27	Stre	eam/	Rea	ch:							5	-	A	L	-		
Weather:		SU	2925 MAN	Loc	ation	:							Lunden Vd Roantland							
Field Staff	•	A	A AV.	Wa	tersh	ed/	Sub	wa	ters	she	d:		Lynden Rd., Brantford Farrchilds Creek.							
Features				Site	Sket	ch:			[				-1	inc	XC.	101			Parent a	
<u> </u>	ch break							1		1		F	121	16	· qr	-Y-	X			1
Cro	ss-section					0		1		1	t	2								-
> Flow	w direction					1	3		184	1		1								_
Niff	le					P			1	7	1	-								
O Poo	1					1				1	N		<b>1</b>							
Mec Mec	dial bar						0				1									
###### Ero	ded bank					AC	1 4	ie	d			1								
Unc	lercut bank						P	0	C	K		71		1						
	rap/stabilization	n/gabi	on					K	Pili	100	p.	11		1						
	ning tree	_							St		1	11	-	1						
·····×····× Fen	200											1	1	2						
L Culv	vert/outfall					NA.						E1	D			<u>.</u>				
Swa	amp/wetland					1				X	4	F	-t	->	CB	1 12				
$\sim$	sses										1		M							
C Tree	e					-			1			h		b	1				-	
Inst	ream log/tree											1		1ª	2	-	-			
	ody debris					-					-	-	1 V	1.		-				
	tion location										1	1	B	-			-			
	etated island										$\vdash$		L J						-	
Flow Type						-						11	) }			-				
H1 Sta	nding water										1		N							
H2 Sca	rcely perceptible	e flow										1	67	2						
H3 Sm	ooth surface flo	w						1		Q		VV	XX	6	\$2	2	-			
H4 Upv	velling							10	40	F	2	¥.	MY.	-X 6	2-	4				
H5 Ripp	oled								WU	9	V		12	.1			1			
H6 Unb	oroken standing	wave									X	1	V	0		M	1			
H7 Bro	ken standing wa	ave										X	-	-	F	3	()			
H8 Chu	ite													A.	2	2)	ind	-		
H9 Free	e fall												Cha	er.	,	T	The	-		
Substrate													25	1	1	1	4			
<b>S1</b> Silt		<b>S6</b>	Small boulder											3		1	/			
S2 San	d	<b>S7</b>	Large boulder											C	X		1-2			
S3 Gra		<b>S</b> 8	Bimodal											2	9		183			
<b>S4</b> Sma	all cobble	<b>S</b> 9	Bedrock/till											X	1-	+	- x F	300		
S5 Larg	ge cobble														/		~2	P	•	
Other								_						Q		1	-			
M Ben	chmark	EP	Erosion pin		$ \leq$	, EP	7-1	$\geq$						F)	KX	F	evo	5Sec	dtr	ce
<b>S</b> Bac	ksight	RB	Rebar	8			1							offi	-	4	TAT	Sat	48	
Dow	vnstream	US	Upstream		A	1	N	ST	6	ec	TNY	V		IK	*1	1		100	0.	
VDJ Woo	ody debris jam	TR	Terrace		to				10	Ce			1	1	1	7				
WC Vall	ey wall contact	FC	Flood chute													S	cale:	I		
BOS Bott	tom of slope	FP	Flood plain	Ad	ditior	nal N	lote	s:												
r <b>os</b> Top	of slope	KP	Knick point		1.5															

- no riparion buffer through upstream portion exposed till predominant less overhead cover + more encreachment lots of slump/fails/sloughs for bank failures.
- predominantly runs a few pools & riffles.



#### **Rapid Geomorphic Assessment** Project Code: 7 7045 Date: Stream/Reach: Weather: Watershed/Subwatershed: Check 3 **Field Staff:** Location: 0 Geomorphological Indicator Present? Factor Process No. Description Value Yes No 1 Lobate bar 1 2 Coarse materials in riffles embedded 1 3 Siltation in pools Evidence of Aggradation 4 Medial bars 1 (AI) 5 Accretion on point bars ١ 6 Poor longitudinal sorting of bed materials 7 Deposition in the overbank zone Sum of indices = 2 .5 1 Exposed bridge footing(s) 2 Exposed sanitary / storm sewer / pipeline / etc. A 3 Elevated storm sewer outfall(s) A 4 Undermined gabion baskets / concrete aprons / etc. A Evidence of 5 Scour pools downstream of culverts / storm sewer outlets Degradation 6 Cut face on bar forms (DI) 7 Head cutting due to knickpoint migration 8 Terrace cut through older bar material 9 Suspended armour layer visible in bank 10 Channel worn into undisturbed overburden / bedrock 2 Sum of indices = 0.6 1 Fallen / leaning trees / fence posts / etc. 2 Occurrence of large organic debris 3 Exposed tree roots 4 Basal scour on inside meander bends 1 Evidence of 5 Basal scour on both sides of channel through riffle Widening 6 Outflanked gabion baskets / concrete walls / etc. (WI) 7 Length of basal scour >50% through subject reach 8 Exposed length of previously buried pipe / cable / etc. 9 Fracture lines along top of bank 10 Exposed building foundation Sum of indices = 5 0.1025 1 Formation of chute(s) 1 2 Single thread channel to multiple channel A Evidence of 3 Evolution of pool-riffle form to low bed relief form Planimetric Form 4 Cut-off channel(s) Adjustment 5 Formation of island(s) (PI) Thalweg alignment out of phase with meander form 6 7 Bar forms poorly formed / reworked / removed Sum of indices = 0 0.14 Additional notes: Stability Index (SI) = (AI+DI+WI+PI)/4 = 0.48 Condition **In Regime** In Transition/Stress **In Adjustment** SI score = □ 0.00 - 0.20 0.21 - 0.40 0.41

Completed by: <u>AAA</u> Checked by:

]

# Rapid Stream Assessment Technique

# Project Code: 22045

Date:	2022-07-27	Stream/Reach:	SC-A-	SC-A-4 Silver Creek						
Neather:	Sunny 74°C	Location:	Lunden 6	2d., Brantford.						
ield Staff:	AA AV.	Watershed/Subwater	rshed: Fairchilds	Creek.						
Evaluation Category	Poor	Fair	Good	Excellent						
	<ul> <li>&lt; 50% of bank network stable</li> <li>Recent bank sloughing, slumping or failure frequently observed</li> </ul>	<ul> <li>50-70% of bank network stable</li> <li>Recent signs of bank sloughing, slumping or failure fairly common</li> </ul>	<ul> <li>71-80% of bank network stable</li> <li>Infrequent signs of bank sloughing, slumping or failure</li> </ul>	<ul> <li>&gt; 80% of bank network stable</li> <li>No evidence of bank sloughing, slumping or failure</li> </ul>						
Channel	<ul> <li>Stream bend areas highly unstable</li> <li>Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas)</li> <li>Bank overhang &gt; 0.8-1.0 m</li> </ul>	<ul> <li>Stream bend areas unstable</li> <li>Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas)</li> <li>Bank overhang 0.8-0.9m</li> </ul>	<ul> <li>Stream bend areas stable</li> <li>Outer bank height 0.6-0.9 m above stream bank (1.2- 1.5 m above stream bank for arge mainstem areas)</li> <li>Bank overhang 0.6-0.8 m</li> </ul>	<ul> <li>Stream bend areas very stable</li> <li>Height &lt; 0.6 m above stream (&lt; 1.2 m above stream bank for large mainstem areas)</li> <li>Bank overhang &lt; 0.6 m</li> </ul>						
Stability	<ul> <li>Young exposed tree roots abundant</li> <li>&gt; 6 recent large tree falls per stream mile</li> </ul>	<ul> <li>Young exposed tree roots common</li> <li>4-5 recent large tree falls per stream mile</li> </ul>	<ul> <li>Exposed tree roots predominantly old and large, smaller young roots scarce</li> <li>2-3 recent large tree falls per stream mile</li> </ul>	<ul> <li>Exposed tree roots old, large and woody</li> <li>Generally 0-1 recent larg tree falls per stream mile</li> </ul>						
	<ul> <li>Bottom 1/3 of bank is highly erodible material</li> <li>Plant/soil matrix severely compromised</li> </ul>	<ul> <li>Bottom 1/3 of bank is generally highly erodible material</li> <li>Plant/soil matrix compromised</li> </ul>	<ul> <li>Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material</li> </ul>	material						
	<ul> <li>Channel cross-section is generally trapezoidally- shaped</li> </ul>	<ul> <li>Channel cross-section is generally trapezoidally- shaped</li> </ul>	Channel cross-section is     generally V- or U-shaped	Channel cross-section is generally V- or U-shaped						
Point range		□ 3 □ 4 ☑ 5	□ 6 □ 7 □ 8	□ 9 □ 10 □ 11						
	<ul> <li>&gt; 75% embedded (&gt; 85% embedded for large mainstem areas)</li> </ul>	<ul> <li>50-75% embedded (60- 85% embedded for large mainstem areas)</li> </ul>	<ul> <li>25-49% embedded (35- 59% embedded for large mainstem areas)</li> </ul>	<ul> <li>Riffle embeddedness &lt; 25% sand-silt (&lt; 35% embedded for large mainstem areas)</li> </ul>						
	<ul> <li>Few, if any, deep pools</li> <li>Pool substrate composition &gt;81% sand- silt</li> </ul>	<ul> <li>Low to moderate number of deep pools</li> <li>Pool substrate composition 60-80% sand-silt</li> </ul>	<ul> <li>Moderate number of deep pools</li> <li>Pool substrate composition 30-59% sand-silt</li> </ul>	<ul> <li>High number of deep pool (&gt; 61 cm deep) (&gt; 122 cm deep for large mainstem areas)</li> <li>Pool substrate compositio &lt;30% sand-silt</li> </ul>						
Channel Scouring/ Sediment Deposition	Streambed streak marks and/or "banana"-shaped sediment deposits common	<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits common</li> </ul>	<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits uncommon</li> </ul>	<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits absent</li> </ul>						
	<ul> <li>Fresh, large sand deposits very common in channel</li> <li>Moderate to heavy sand deposition along major portion of overbank area</li> </ul>	<ul> <li>Fresh, large sand deposits common in channel</li> <li>Small localized areas of fresh sand deposits along top of low banks</li> </ul>	<ul> <li>Fresh, large sand deposits uncommon in channel</li> <li>Small localized areas of fresh sand deposits along top of low banks</li> </ul>	<ul> <li>Fresh, large sand deposits rare or absent from channel</li> <li>No evidence of fresh sediment deposition on overbank</li> </ul>						
ده الدارد . - المقاد	<ul> <li>Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand</li> </ul>	• Point bars common, moderate to large and unstable with high amount of fresh sand	<ul> <li>Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand</li> </ul>	<ul> <li>Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand</li> </ul>						
Point range	□ 0 □ 1 <b>□ 2</b>	□ 3 ⊡ 4	□ 5 □ 6	□7 □ 8						

Date:	2022-07-27	Reach: S(	A - 4 Project Code:	PN22045
Evaluation Category	Poor	Fair	Good	Excellent
	<ul> <li>Wetted perimeter &lt; 40% of bottom channel width (&lt; 45% for large mainstem areas)</li> </ul>	<ul> <li>Wetted perimeter 40- 60% of bottom channel width (45-65% for large mainstem areas)</li> </ul>	<ul> <li>Wetted perimeter 61-85% of bottom channel width (66-90% for large mainstem areas)</li> </ul>	<ul> <li>Wetted perimeter &gt; 85% of bottom channel width (&gt; 90% for large mainstem areas)</li> </ul>
	<ul> <li>Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low)</li> </ul>	<ul> <li>Few pools present, riffles and runs dominant.</li> <li>Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate)</li> </ul>	<ul> <li>Good mix between riffles, runs and pools</li> <li>Relatively diverse velocity and depth of flow</li> </ul>	<ul> <li>Riffles, runs and pool habitat present</li> <li>Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)</li> </ul>
Physical Instream	<ul> <li>Riffle substrate composition: predominantly gravel with high amount of sand</li> <li>&lt; 5% cobble</li> </ul>	<ul> <li>Riffle substrate composition: predominantly small cobble, gravel and sand</li> <li>5-24% cobble</li> </ul>	<ul> <li>Riffle substrate composition: good mix of gravel, cobble, and rubble material</li> <li>25-49% cobble</li> </ul>	<ul> <li>Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand</li> <li>&gt; 50% cobble</li> </ul>
Habitat	<ul> <li>Riffle depth &lt; 10 cm for large mainstem areas</li> </ul>	<ul> <li>Riffle depth 10-15 cm for large mainstem areas</li> </ul>	<ul> <li>Riffle depth 15-20 cm for large mainstem areas</li> </ul>	<ul> <li>Riffle depth &gt; 20 cm for large mainstem areas</li> </ul>
	<ul> <li>Large pools generally &lt; 30 cm deep (&lt; 61 cm for large mainstem areas) and devoid of overhead cover/structure</li> </ul>	Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure	Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure	<ul> <li>Large pools generally &gt; 61 cm deep (&gt; 122 cm for large mainstem areas) with good overhead cover/structure</li> </ul>
	<ul> <li>Extensive channel alteration and/or point bar formation/enlargement</li> </ul>	<ul> <li>Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement</li> </ul>	<ul> <li>Slight amount of channel alteration and/or slight increase in point bar formation/enlargement</li> </ul>	<ul> <li>No channel alteration or significant point bar formation/enlargement</li> </ul>
	• Riffle/Pool ratio 0.49:1 ; ≥1.51:1	• Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1	• Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1	• Riffle/Pool ratio 0.9-1.1:1
	<ul> <li>Summer afternoon water temperature &gt; 27°C</li> </ul>	<ul> <li>Summer afternoon water temperature 24-27°C</li> </ul>	<ul> <li>Summer afternoon water temperature 20-24°C</li> </ul>	<ul> <li>Summer afternoon water temperature &lt; 20°C</li> </ul>
Point range	□ 0 □ 1 □ 2	□ 3 ⊑∕ 4	□ 5 □ 6	□ 7 □ 8
	<ul> <li>Substrate fouling level: High (&gt; 50%)</li> </ul>	<ul> <li>Substrate fouling level: Moderate (21-50%)</li> </ul>	• Substrate fouling level: Very light (11-20%)	<ul> <li>Substrate fouling level: Rock underside (0-10%)</li> </ul>
Water Quality	<ul> <li>Brown colour</li> <li>TDS: &gt; 150 mg/L</li> </ul>	<ul> <li>Grey colour</li> <li>TDS: 101-150 mg/L</li> </ul>	<ul><li>Slightly grey colour</li><li>TDS: 50-100 mg/L</li></ul>	<ul> <li>Clear flow</li> <li>TDS: &lt; 50 mg/L</li> </ul>
water Quanty	<ul> <li>Objects visible to depth</li> <li>&lt; 0.15m below surface</li> </ul>	<ul> <li>Objects visible to depth 0.15-0.5m below surface</li> </ul>	<ul> <li>Objects visible to depth 0.5-1.0m below surface</li> </ul>	• Objects visible to depth > 1.0m below surface
	<ul> <li>Moderate to strong organic odour</li> </ul>	<ul> <li>Slight to moderate organic odour</li> </ul>	Slight organic odour	• No odour
Point range	C 0 C 1 C 2	□3 □4	☑ 5 匚 6	□ 7 □ 8
Riparian Habitat	<ul> <li>Narrow riparian area of mostly non-woody vegetation</li> </ul>	<ul> <li>Riparian area predominantly wooded but with major localized gaps</li> </ul>	<ul> <li>Forested buffer generally</li> <li>&gt; 31 m wide along major portion of both banks</li> </ul>	<ul> <li>Wide (&gt; 60 m) mature forested buffer along both banks</li> </ul>
Conditions	<ul> <li>Canopy coverage: &lt;50% shading (30% for large mainstem areas)</li> </ul>	<ul> <li>Canopy coverage: 50- 60% shading (30-44% for large mainstem areas)</li> </ul>	<ul> <li>Canopy coverage: 60-79% shading (45-59% for large mainstem areas)</li> </ul>	<ul> <li>Canopy coverage: &gt;80% shading (&gt; 60% for large mainstem areas)</li> </ul>
Point range	□ 0 □ 1		□ 4 □ 5	□ 6 □ 7
Total overall s	core (0-42) = 2	Poor (<13)	air (13-24) Good (25-3	(>35) Excellent (>35)

Completed by: ______. Checked by: ______

						GEO	M O Geomorphole	RPH	IХ
Reach Characteristics		Project Cod	le: 7.7.01	15			Earth Science Observations	-97	
Date: 2022-07-27	Stream	n/Reach:	SC-	A-4	Silve	v Cre	ek,	Č-	
Weather: SUMNY 7.4°C	Locati	on:	Lunde	NR	1	vant	lard		
Field Staff: AA AV,	Water	rshed/Subwatershed:	Fard	alid	D'EN	r-eek	1		
UTM (Upstream)	UTM (	(Downstream)		<b>,</b>			1		
Land Use (Table 1)     Valley Type (Table 2)     Channel Type (Table 3)     Channel Type (Table 3)	Zone ole 4)	2 Flow Type (Table 5)	Grou	ndwater	E	vidence: _			
Riparian Vegetation		Aquatic/Instream Veg	getation			Water Qu	ality		
Dominant Type:       Coverage:       Channel widths widths       Age Class (yrs):       Encroachmen         (Table 6)       2/14       Instant None       1 -4       Immature (<5)       (Table 5)         Species:       Immature       Fragmented       Immature       (5-30)       Immature         Miked       Immature       Continuous       > 10       Immature (>30)       Immature	7)	Type (Table8)       Image: Comparis to the second sec	Coverage of I Density of Low Modera High	WD: WDJ/		2 10	Odour (7 Turbidity	Table 16) (Table 17)	
Channel Characteristics									
Sinuosity (Type) Sinuosity (Degree) Gradient Num	ber of (	Channels	Clay/Silt	Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9) 2 (Table 10) 2 (Table 11) 2 (Tab	ole 12)	Riffle Substra	ite						
Entrenchment Type of Bank Failure Downs's Classification		Pool Substra	ite 🛛						
(Table 13) 3 (Table 14) 5 (Table 15) +		Bank Material	Ð	Ð					
Bankfull Width (m) 3.7 3.5 4.76 Wetted Width (m)	1.92	1.08 2.1de		<b>k Angle</b> ) – 30	Bank E □ < 5%		Notes:		1
Bankfull Depth (m)	0.3	0.16 0.32		0 - 60	□ 5 – 3				
Riffle/Pool Spacing (m)     % Riffles:     % Pools:     40	Me	ander Amplitude:		50 – 90 Jndercut	☑ 30 - □ 60 -				
Pool Depth (m)	0.2	Comments:							
Velocity (m/s) Wiffle ball / ADV	/ Estim	O ated							
flow to stow			Compl	eted by	AA	<u>,</u> (	Checked by	:	

-

1

#### **General Site Characteristics** Project Code: 77045 Date: 202207-27 Stream/Reach: Silver Cree Weather: SUNNU 20°C Location: **Field Staff:** des Watershed/Subwatershed: airch 00 Features Site Sketch: Reach break Cross-section Xpo anic -Flow direction N Riffle 04 Pool CHILD . Medial bar Ban ####### Eroded bank ----- Undercut bank BFI KXXXXX Rip rap/stabilization/gabion x----x Fence L____ Culvert/outfall $\bigcirc$ Swamp/wetland ₩₩₩ Grasses did G Tree Instream log/tree ₭ ₭ ₭ Woody debris 只 Station location VV Vegetated island Flow Type H1 Standing water H2 Scarcely perceptible flow HЗ Smooth surface flow Н4 Upwelling 68 H5 Rippled 5100 H6 Unbroken standing wave H7 Broken standing wave H8 Chute H9 Free fall 4 Substrate TYD **S1** Silt S6 Small boulder **S**2 Sand **S7** Large boulder **S**3 Gravel **S8** Bimodal **S**4 Small cobble **S9** Bedrock/till **S**5 Large cobble Other BM Benchmark EP Erosion pin h BS Backsight RB Rebar DS Downstream US Upstream WDJ Woody debris jam TR Terrace VWC Valley wall contact FC Flood chute Scale: BOS Bottom of slope FP Flood plain Additional Notes: TOS Top of slope KP Knick point

- Exposed till for most of channel

-sand duposits common

- VWC along most of reach to Strunk trees + exposed rob. Completed by: _AA._ Checked by: _

XLOSS EVESTON

GEO MORPHIX

#### Project Code: 22045 **Rapid Geomorphic Assessment** Date: 2022-07-2 Stream/Reach: Weather: Watershed/Subwatershed: rivehilds (re ny **Field Staff:** Location: Geomorphological Indicator Present? Factor Process No. Description Value Yes No 1 Lobate bar 2 Coarse materials in riffles embedded 3 Siltation in pools Evidence of Aggradation 4 Medial bars (AI) 5 Accretion on point bars 6 Poor longitudinal sorting of bed materials 7 Deposition in the overbank zone Sum of indices = 2 0.429 1 Exposed bridge footing(s) A N 2 Exposed sanitary / storm sewer / pipeline / etc. A Elevated storm sewer outfall(s) 3 Undermined gabion baskets / concrete aprons / etc. 4 A Evidence of 5 Scour pools downstream of culverts / storm sewer outlets A Degradation 6 Cut face on bar forms (DI) 7 Head cutting due to knickpoint migration 8 Terrace cut through older bar material 9 Suspended armour layer visible in bank 1 10 Channel worn into undisturbed overburden / bedrock L Sum of indices = 1 Fallen / leaning trees / fence posts / etc. 2 Occurrence of large organic debris 3 Exposed tree roots 4 Basal scour on inside meander bends Evidence of 5 Basal scour on both sides of channel through riffle Widenina 6 Outflanked gabion baskets / concrete walls / etc. A (WI) 7 Length of basal scour >50% through subject reach 8 Exposed length of previously buried pipe / cable / etc. 9 Fracture lines along top of bank Exposed building foundation 10 N Sum of indices = 1 Formation of chute(s) Single thread channel to multiple channel 2 1 Evidence of 3 Evolution of pool-riffle form to low bed relief form Planimetric Form 4 Cut-off channel(s) Adjustment 5 Formation of island(s) (PI) Thalweg alignment out of phase with meander form 6 Bar forms poorly formed / reworked / removed 7 Sum of indices = C Additional notes: Stability Index (SI) = (AI+DI+WI+PI)/4 = 0.36Condition **In Regime** In Transition/Stress **In Adjustment** SI score = □ 0.00 - 0.20 0.21 - 0.40 0.41

Completed by: _____ Checked by: _____

1

# Rapid Stream Assessment Technique

# Project Code: 22045

Date:	2022-07-27	Stream/Reach:	5C-A-1	Silver Creek		
Neather:	SUNNY 70°C	Location:	Lynden	Rd, Brantford		
Field Staff:	AAUAV	Watershed/Subwater	shed: Farychild	s creek		
Evaluation Category	Poor	Fair	Good	Excellent		
	<ul> <li>&lt; 50% of bank network stable</li> <li>Recent bank sloughing, slumping or failure frequently observed</li> </ul>	<ul> <li>50-70% of bank network stable</li> <li>Recent signs of bank sloughing, slumping or failure fairly common</li> </ul>	<ul> <li>71-80% of bank network stable</li> <li>Infrequent signs of bank sloughing, slumping or failure</li> </ul>	<ul> <li>&gt; 80% of bank network stable</li> <li>No evidence of bank sloughing, slumping or failure</li> </ul>		
<ul> <li>Stream bend areas high unstable</li> <li>Outer bank height 1.2 n above stream bank (2.1 m above stream bank for large mainsten areas)</li> <li>Bank overhang &gt; 0.8-1 m</li> </ul>		<ul> <li>Stream bend areas unstable</li> <li>Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas)</li> <li>Bank overhang 0.8-0.9m</li> </ul>	<ul> <li>Stream bend areas stable</li> <li>Outer bank height 0.6-0.9 m above stream bank (1.2- 1.5 m above stream bank for large mainstem areas)</li> <li>Bank overhang 0.6-0.8 m</li> </ul>	<ul> <li>Stream bend areas very stable</li> <li>Height &lt; 0.6 m above stream (&lt; 1.2 m above stream bank for large mainstem areas)</li> <li>Bank overhang &lt; 0.6 m</li> </ul>		
Stability	<ul> <li>Young exposed tree roots abundant</li> <li>&gt; 6 recent large tree falls per stream mile</li> </ul>	<ul> <li>Young exposed tree roots common</li> <li>4-5 recent large tree falls per stream mile</li> </ul>	<ul> <li>Exposed tree roots old, large and woody</li> <li>Generally 0-1 recent large tree falls per stream mile</li> </ul>			
	<ul> <li>Bottom 1/3 of bank is highly erodible material</li> <li>Plant/soil matrix severely compromised</li> </ul>	<ul> <li>Bottom 1/3 of bank is generally highly erodible material</li> <li>Plant/soil matrix compromised</li> </ul>	• Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material	<ul> <li>Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material</li> </ul>		
	Channel cross-section is generally trapezoidally- shaped	<ul> <li>Channel cross-section is generally trapezoidally- shaped</li> </ul>	<ul> <li>Channel cross-section is generally V- or U-shaped</li> </ul>	Channel cross-section is generally V- or U-shaped		
Point range		□ 3 ☑ 4 □ 5	匚 6 匚 7 匚 8	□ 9 □ 10 □ 11		
	<ul> <li>&gt; 75% embedded (&gt; 85% embedded for large mainstem areas)</li> </ul>	<ul> <li>50-75% embedded (60- 85% embedded for large mainstem areas)</li> </ul>	<ul> <li>25-49% embedded (35- 59% embedded for large mainstem areas)</li> </ul>	<ul> <li>Riffle embeddedness &lt; 25% sand-silt (&lt; 35% embedded for large mainstem areas)</li> </ul>		
	<ul> <li>Few, if any, deep pools</li> <li>Pool substrate composition &gt;81% sand- silt</li> </ul>	<ul> <li>Low to moderate number of deep pools</li> <li>Pool substrate composition 60-80% sand-silt</li> </ul>	<ul> <li>High number of deep pool         <ul> <li>61 cm deep)</li> <li>122 cm deep for large mainstem areas)</li> </ul> </li> <li>Pool substrate composition         <ul> <li>30% sand-silt</li> </ul> </li> </ul>			
Channel Scouring/ Sediment Deposition	Streambed streak marks and/or "banana"-shaped sediment deposits common	<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits common</li> </ul>	<ul> <li>Streambed streak marks and/or "banana"-shaped sediment deposits uncommon</li> </ul>	Streambed streak marks and/or "banana"-shaped sediment deposits absent		
<ul> <li>Fresh, large sand deposits very common in channel</li> <li>Moderate to heavy sand</li> <li>Fresh, large sand deposits common in channel</li> <li>Small localized areas of</li> </ul>		<ul> <li>Fresh, large sand deposits uncommon in channel</li> <li>Small localized areas of fresh sand deposits along top of low banks</li> </ul>	<ul> <li>Fresh, large sand deposits rare or absent from channel</li> <li>No evidence of fresh sediment deposition on overbank</li> </ul>			
	<ul> <li>Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand</li> </ul>	<ul> <li>Point bars common, moderate to large and unstable with high amount of fresh sand</li> <li>Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand</li> <li>Point bars few stable, well-vegetated and/or armoured with little or no fresh sand</li> </ul>				
Point range	□ 0 □ 1 <b>□ 2</b>	□ 3 □ 4	Z 5 C 6	□7 □8		

Date:	2022-07-27	Reach: SC-A-	Project Code:	22045
Evaluation Category	Poor	Fair	Good	Excellent
	<ul> <li>Wetted perimeter &lt; 40% of bottom channel width (&lt; 45% for large mainstem areas)</li> </ul>	<ul> <li>Wetted perimeter 40- 60% of bottom channel width (45-65% for large mainstem areas)</li> </ul>	<ul> <li>Wetted perimeter 61-85% of bottom channel width (66-90% for large mainstem areas)</li> </ul>	<ul> <li>Wetted perimeter &gt; 85% of bottom channel width (&gt; 90% for large mainstem areas)</li> </ul>
	<ul> <li>Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low)</li> </ul>	<ul> <li>Few pools present, riffles and runs dominant.</li> <li>Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate)</li> </ul>	<ul> <li>Good mix between riffles, runs and pools</li> <li>Relatively diverse velocity and depth of flow</li> </ul>	<ul> <li>Riffles, runs and pool habitat present</li> <li>Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)</li> </ul>
Physical Instream	<ul> <li>Riffle substrate composition: predominantly gravel with high amount of sand</li> <li>&lt; 5% cobble</li> </ul>	<ul> <li>Riffle substrate composition: predominantly small cobble, gravel and sand</li> <li>5-24% cobble</li> </ul>	<ul> <li>Riffle substrate composition: good mix of gravel, cobble, and rubble material</li> <li>25-49% cobble</li> </ul>	<ul> <li>Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand</li> <li>&gt; 50% cobble</li> </ul>
Habitat	<ul> <li>Riffle depth &lt; 10 cm for large mainstem areas</li> </ul>	Riffle depth 10-15 cm for large mainstem areas	<ul> <li>Riffle depth 15-20 cm for large mainstem areas</li> </ul>	<ul> <li>Riffle depth &gt; 20 cm for large mainstem areas</li> </ul>
	<ul> <li>Large pools generally &lt; 30 cm deep (&lt; 61 cm for large mainstem areas) and devoid of overhead cover/structure</li> </ul>	<ul> <li>Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure</li> </ul>	Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure	<ul> <li>Large pools generally &gt; 61 cm deep (&gt; 122 cm for large mainstem areas) with good overhead cover/structure</li> </ul>
	<ul> <li>Extensive channel alteration and/or point bar formation/enlargement</li> </ul>	<ul> <li>Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement</li> </ul>	<ul> <li>No channel alteration or significant point bar formation/enlargement</li> </ul>	
	<ul> <li>Riffle/Pool ratio 0.49:1 ; ≥1.51:1</li> </ul>	<ul> <li>Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1</li> </ul>	• Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1	• Riffle/Pool ratio 0.9-1.1:1
	<ul> <li>Summer afternoon water temperature &gt; 27°C</li> </ul>	<ul> <li>Summer afternoon water temperature 24-27°C</li> </ul>	<ul> <li>Summer afternoon water temperature 20-24°C</li> </ul>	<ul> <li>Summer afternoon water temperature &lt; 20°C</li> </ul>
Point range	□ 0 □ 1 □ 2	□ 3 □ 4	☑ 5 ⊑ 6	□ 7 □ 8
	<ul> <li>Substrate fouling level: High (&gt; 50%)</li> </ul>	<ul> <li>Substrate fouling level: Moderate (21-50%)</li> </ul>	• Substrate fouling level: Very light (11-20%)	<ul> <li>Substrate fouling level: Rock underside (0-10%)</li> </ul>
Water Quality	<ul> <li>Brown colour</li> <li>TDS: &gt; 150 mg/L</li> </ul>	<ul><li>Grey colour</li><li>TDS: 101-150 mg/L</li></ul>	Slightly grey colour     TDS: 50-100 mg/L	<ul> <li>Clear flow</li> <li>TDS: &lt; 50 mg/L</li> </ul>
water Quality	<ul> <li>Objects visible to depth</li> <li>&lt; 0.15m below surface</li> </ul>	<ul> <li>Objects visible to depth 0.15-0.5m below surface</li> </ul>	• Objects visible to depth 0.5-1.0m below surface	<ul> <li>Objects visible to depth</li> <li>&gt; 1.0m below surface</li> </ul>
	<ul> <li>Moderate to strong organic odour</li> </ul>	<ul> <li>Slight to moderate organic odour</li> </ul>	Slight organic odour	No odour
Point range	□ 0 □ 1 □ 2	□3□4	□ 5 🗹 6	□ 7 □ 8
Riparian Habitat	<ul> <li>Narrow riparian area of mostly non-woody vegetation</li> </ul>	<ul> <li>Riparian area predominantly wooded but with major localized gaps</li> </ul>	<ul> <li>Forested buffer generally</li> <li>&gt; 31 m wide along major portion of both banks</li> </ul>	<ul> <li>Wide (&gt; 60 m) mature forested buffer along both banks</li> </ul>
Conditions	<ul> <li>Canopy coverage:</li> <li>&lt;50% shading (30% for large mainstem areas)</li> </ul>	Canopy coverage: 50- 60% shading (30-44% for large mainstem areas)	Canopy coverage: 60-79% shading (45-59% for large mainstem areas)	<ul> <li>Canopy coverage: &gt;80% shading (&gt; 60% for large mainstem areas)</li> </ul>
Point range	□ 0 □ 1	□ 2 □ 3	☑ 4 ⊑ 5	□6 □7

Completed by: _____ Checked by: _

NA

)

GEO

Geomorphology Earth Science Observations

# MORPHIX

**Reach Characteristics** 

-

# **Project Code:** 22645

Date: 2022-07-27	Stream/Reach:	Silver Cree	K SC-A-	-1 -		
Weather: Sunny 18°C	Location:	Lundon Ro	1, Brantfor	d.		
Field Staff: AA AV	Watershed/Subwatershed:	Fairchilds				
UTM (Upstream)	UTM (Downstream)					
Land Use (Table 1)     Valley Type (Table 2)     Channel Type (Table 3)     Channel (Table 3)	I Zone     Flow Type       able 4)     (Table 5)	Groundwater	Evidence:	6		
Riparian Vegetation	Aquatic/Instream Ve	egetation	Water Q	uality		
Dominant Type:       Coverage:       Channel widths       Age Class (yrs):       Encroachme         (Table 6)       I       Instant       None       Instant       <	11 1 1	Density of WD: k Low WDJ/		Odour (T Turbidity (		
Channel Characteristics						
Sinuosity (Type) Sinuosity (Degree) Gradient Nu	mber of Channels	Clay/Silt Sand	Gravel Cobble	Boulder	Parent	Rootlets
(Table 9) (Table 10) 2 (Table 11) 2 (Ta	able 12) Riffle Substr	rate 🗹 🖌				
Entrenchment Type of Bank Failure Downs's Classification	Pool Substr	ate 🗗 🕑				
(Table 13) (Table 14) (Table 15)	Bank Materia					
Bankfull Width (m) 4.13 4.72 4.20 Wetted Width (m)	2.30 2.38 1.74	<b>Bank Angle</b> □ 0 – 30 □ 30 – 60	Bank Erosion □ < 5% □ 5 30%	Notes:		
Bankfull Depth (m)     I.25     I.1     Wetted Depth (m)       Riffle/Pool Spacing (m)     2.5     % Riffles:     60     % Pools:	0.11         0.27         0.10           Meander Amplitude:         0.10	□ 30 - 80 	□ 30 - 60% □ 30 - 100%			
Pool Depth (m) Riffle Length (m) O, 2 Undercuts (m	) $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ Comments:					
Velocity (m/s)	V / Estimated	·	- 9-			
toslanto		Completed by	AA.	– Checked by:		

measure

·tin-

Project	Code:	27	0	45	
FIUJELL	coue.	1.1	U	1	

GEO

MORPHIX

Reach Characteristics		Project C	ode: 220	45			Geornorphol Earth Science Observations	6	
Date: 2022-07-27	Stream/	Reach:	POIZ	)		11 11			
Weather: Sunny 24°C	Location	1:	1	nRd	N. 8	vantf	low of		
Field Staff:	Watersh	ned/Subwatershed:	Farrel	1. 8.	Cres	1K			
UTM (Upstream)	UTM (Do	ownstream)			and				
	able 4)	Flow Type (Table 5)	3 □Gra	undwater	E	vidence: _			
Riparian Vegetation		Aquatic/Instream V	egetation			Water Qu	uality	and the second	
Dominant Type:       Coverage:       Channel widths       Age Class (yrs):       Encroachme (Table 6)         (Table 6)       //4       Immature (<5)       (Table 5)       (Table 6)       (Table 6)		Type (Table8) N Woody Debris Present in Cutba Present in Chann Not Present	Density	of WD: WDJ/			1	Table 16) (Table 17)	
Channel Characteristics									
Sinuosity (Type) Sinuosity (Degree) Gradient Nu	umber of Ch	annels	Clay/Sil	Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9) (Table 10) (Table 11) (T	able 12)	Riffle Subst	rate 🗌						
Entrenchment Type of Bank Failure Downs's Classification		Pool Subst	rate 🗌						
(Table 13) (Table 14) (Table 15)		Bank Materi	al 📴	B					Y
Bankfull Width (m)    0.53    0.55    0.73    Wetted Width (m)      Bankfull Depth (m)    0.17    0.19    Wetted Depth (m)      Riffle/Pool Spacing (m)    % Riffles:    % Pools:      Pool Depth (m)    Riffle Length (m)    Undercuts (m)      Velocity (m/s)    Wiffle ball / AD	Mean				Bank Er	0% 60%	measur before	onctul ements bank	
· Swall feature with poorly defined · channel was dry · RSAT/RGA not applicable. · flows from ditch along traintracks to fe · cobbles at upstream extent (may be place	exested	s. wetland	Com	leted by	AA	(	Checked by	:	_

# Detailed Assessment (Level)

Project Code: 22045

13

٢.,

GEO

MORPHIX

vnstream
Jpstream
s:
: &
mm
we y adde
Unconfined
Depositior
Deposition
n/a
0%
forest
er:
Continuous
el widths):
≥10
/egetation:
( <u>250 y</u> )s) nt:
Moderate
Extreme
ris:
High
phs Taken
l: m (LWD

Completed by: _____ Checked By: ___

Page _____ of _____

## **Detailed Assessment (Level)**

Project Code: 22045

GEO

MORPHIX

Date: 022-08.30 Reach: SC-A-5 Weather: Location: 220 ynden RA surract. Field Staff: Watershed/Subwatershed: Creek Middle Тор Bottom Angle Water XS Notes **Survey Direction** 2920 3035 2945 345 3m D/s Upstream to Downstream 2975 0492 20 3045 349 Downstream to Upstream 2960 175 3050 250 2975 2980 3129 3090 242 2985 **Cross-sections** 3125 250 105 305 3005 29 87 No. of Cross-sections: ____ 3000 351 30 87 3052 3017 Monitoring Cross-sections: 1 3049 4-19 3022 3010 □ None 14 3090 3069 17 □ Yes 3052 3172 3153 3148 35 3060 177 m If yes, which ones: ____ &_ Rain in last 24 hours D None Yes: Amount _____ mm Valley Type: 179 3160 3101 66 3062 Confined Partially Unconfined 3170 2172 9-1 Channel Zone: 3060 Headwater Transfer Deposition Land Use: Aquatic Vegetation: Coverage of Reach: _____% 3235 3215 3198 3065 Riparian Vegetation: ____ 3245 2209 34 3140 3277 Extent of Riparian Cover: 3240 3135 3205 00 32 Fragment None Continuous 3260 31.35 0885 1.50 Riparian Cover (channel widths): 215 326 210 3135 1-4 4-10 >10 Age Class of Riparian Vegetation: Immature Established Mature (<5 yrs) (5-30 yrs) (>30 yrs) Extent of Encroachment: None Minimal Moderate Heavy Extreme **Density of Woody Debris:** Low Moderate High Overall Photographs Taken Blockage(s) in Channel: Infrastructure Dam LWD

Completed by: _____ Checked By: _____

Page _____ of _____

# **Detailed Assessment (Level)**

# Project Code:

 Date:
 Reach:

 Weather:
 Location:

 Field Staff:
 Watershed/Subwatershed:

Тор	Middle	Bottom	Angle	Water	XS	Notes	Survey Direction
3391	3336		124	3205			Upstream to Downstream
						P	Downstream to Upstream
0454	0385*	0322	112			TPIFS	
1028	0925	0832	344	16		TP2 BS	Cross-sections
	1	J.					No. of Cross-sections:
3755	-3830	3914	340	3630		an dist.	Monitoring Cross-sections:
3939	3775	3701	342	3690	1.5		🗆 None
3860	3805	3440	344	3690			□ Yes
3864	3811	3753	345	3695	14		If yes, which ones: &
3800	3750	3700	351	3695	09 29*	¥57	141
3 795	3775	3755	10	3700			Rain in last 24 hours
3 84 8	3838	3928	4	3700	1		🗆 None
3862	385a	3836	345	3700		Sec. 1.	Yes: Amount mm
3900	3884	3869	320	3710			
4020	4005	3988	300	3710	15 N.		Valley Type:
3950	3938	3907	282	3710			Confined Partially Unconfined
3905	3880	3854	263	3=10			Channel Zone:
3895	3875	3838	252	3713			Headwater Transfer Deposition
3 875		3815	239	3715			Land Use:
5879	3844	3807	230	3715			Aquatic Vegetation:
3914	3872	383c	224	3715	2795	258	Coverage of Reach:%
3935	3885	3842	211	3715			Riparian Vegetation:
4015	3970	3905	212	3720			Extent of Riparian Cover:
	and set access				×		Fragment None Continuous
							Riparian Cover (channel widths):
				80	II		1-4 4-10 >10
				-	1	1	Age Class of Riparian Vegetation:
					1		Immature Established Mature
							(<5 yrs) (5-30 yrs) (>30 yrs)
						1	Extent of Encroachment:
				2	1		None Minimal Moderate
						137	Heavy Extreme
S							Density of Woody Debris:
							Low Moderate High
						int time	Overall Photographs Taken
							Blockage(s) in Channel:
							Infrastructure Dam LWD

Completed by: _____ Checked By:

Page ____ ___ of __

MORPHIX

Earth Scie

GEO

22045

#### Project Code: 27045 Cross-Section Characteristics Date: 2012-08-30 Reach/Cross-section: Weather: Marcast Location: 7-7-1 nden Ed. Kant Field Staff: Watershed/Subwatershed: Rilver AA (ree Cross-sectional Morphology Notes 0552 Z Riffle I Pool 010 🗌 Run Other 1 DZO 0465 4 Substrate 0477 16 Sample: RC (I) 01074 2.10 1001 Pebble Count (cm): ()2159 1. <u>6</u> 11. <u>3.2</u> 21. <u>3</u> 31. 1. 2 2. 5 12. 0.4 22. 7 1382 32.0.2 7734 3. <u>5</u> 13. <u>614</u> 23. <u>5.5</u> 33.0.7 7938 4. 4.7 14. 0.2 24. 1.5 34. 1.4 5. 4.4 15. 1.7 25. 1.4 35. 13.5 47 7977 25 6. 1.5 16. 5 26. 7.4 36 36.1.6 49 7. SAND 17. 4 27. 2 3070 37. 2 8. SAND - 18. 2.2 28. 9.5 3084 38. 1.4 9. 5.6 19. 1.5 29. 514 3111 39. 2.5 10. <u>6</u> 20. <u>6</u>.5 6.1 3176 30. 1.8 40.2.6 6.5 375% Particle Shape: 3272 ] Platy Sub-angular Well Rounded 3745 □ Very Angular □ Angular □ Sub-Rounded 3178 Rounded 3054 Embededness: _____ % Subpavement: ______ 9 2911 2 2791 5 7691 8 7580 Sediment Transport 0 2355 1 Observed I Not Observed 1117 If Observed: CI S. 0879 Suspended Sliding Rolling Saltation 9.9 0770 Percentage of Bed Active: % 10.5 1691 11.0 0531 Velocity and Discharge 1438 11.2 Velocity: Method: Estimated _____ m/s _ Wiffle ball □ Measured _____m/s □ Current Meter Discharge: ADV Estimated _____ m³/s I Marsh McBirney Measured _____m³/s I Other

Completed by: _____ Checked by: _____

GEO

MORPHIX

Page _____ of _____

# GEO MORPHIX Project Code: 22045 **Bank Characteristics** Date: Reach/XS: Y Sketch (Viewed Downstream) Include: vegetation type and location, soil horizons, woody debris, roots, etc. Left Bank **Right Bank**

Left Bank Materials			<b>Right Bank Materials</b>		
Bedrock	□ Gravel		Bedrock	□ Gravel	
I Till	🗆 🗆 Small Cobble	e l	ZTII	🗌 Small Cobble	
Clay	Large Cobble	e	⊑_Clay	🗆 Large Cobble	
Silt	🗆 Small Boulde	er	⊑∕Silt	🗆 Small Boulde	er 👘
Sand	🗆 Large Boulde	er	Sand	🗆 Large Boulde	er
Bank Height:	1.8	m	Bank Height:	1.8	m
Bank Angle:	60	0	Bank Angle:	60	0
Root Depth:	1.2	m	Root Depth:	0.7	m
Root Density:	5	%	Root Density:	5	%
Undercut:	0	m	Undercut:	0	m
Erosion Pin:	19.9	m	Erosion Pin:		m
Penetrometer:		kg/cm ²	Penetrometer:		kg/cm ²
Foo	t Used: 🗌 Yes	⊒ No	F	oot Used: 🗌 Yes	⊂ No
	2010	0.1.1			-

Qra

Small

32

Dert

Additional Notes	
Evosion pms installed.	
Photo Order: USIDS. UB. & B	

Completed by: _____ Checked by: ____

59.99

cobbles.

Page _____ of _____

Sodsa dot

exposed

# GEO MORPHIX GEO MORPHIX Geomorphology Entriscence Observations

# **Cross-Section Characteristics**

Date:	1022-08-30	Reach/Cross-section:	XS2
Weather:	Overcast 221	Location:	Lynden Rd Frontlad
Field Staff:	AATT	Watershed/Subwatershed:	Silver creek

6.6	0840	9				□ Riffle □ Pool
13.	0995		-			
1.9	1066	BE				Substrate
1.Ò	2035					Sample:
2.3	2167		×		ų.	$\Box$ Bed $\Box$ Bank $\Box$ Subpavement $\Box$ Water $\Box$ None
2.7	2207			1. A.		Pebble Count (cm):
3.10	2354		2			1 11 21 31
3.5	2471		*			2 12 22 32
3.9	2570	· ``				3 13 23 33
4,20.	2715	1,005	-			4 14 24 34
4.60	2873		5 2	2		5 15 25 35
5.15	3050	NE	4.4 m			6 16 26 36
5.5	3180	-				7 17 27 37
5.8	3248			-		8 18 28 38
6.2	3255					9 19 29 39
6.5	3181	5				10 20 30 40
6.9	3090		1.			Particle Shape:
7.2	3005					I Platy I Sub-angular I Well Rounded
7.5	2831					□ Very Angular □ Angular □ Sub-Rounded
7.8	2582					
8.0	2357					Embededness: %
8.2	0602	-				Subpavement:([]]
8.5	6295					Sorting:  Well  Moderate  Poor  Very poor
8.8	0113	21		1		
9.2	0035		- 16.2			Sediment Transport
			2.1061	5-		Observed     Not Observed
						If Observed:
	9			2		Suspended Sliding Rolling Saltation
						Percentage of Bed Active: %
		12				
						Velocity and Discharge
				•		Velocity: Method:
· · · · · · · · · · · · · · · · · · · ·				- 2		Estimated m/s _ Wiffle ball
						Measuredm/s      Current Meter
						Discharge: _ ADV
	1.5					Estimated m ³ /s
						I Measuredm ³ /s I Other

Completed by: _____ Checked by: _____

Page _____ of _____

# GEO

MORPHIX

## **Bank Characteristics**

Project Code: 22245

ate:	201-08-3	0	Reach/XS:			XSZ
etch (V	iewed Downstream) Inc	lude: vegetation type	and location, soil horizons	s, woody debris, roo	ts, etc.	
	Left Bank				Right Bank	
					1C	12-10
						xposed is
						, cO\
		/ /				
					F	expered.
		h		V	-////////	Chair
		$\rightarrow$	2			
		Hatian				

Left Bank Materials		<b>Right Bank Materials</b>		
🗌 Bedrock 🗌 Grav	/el	E Bedrock	□ Gravel	
🛾 Till 🗌 🗆 Sma	Il Cobble	_ ⊤ill	🗆 Small Cobble	
🗹 Clay 🛛 🗆 Larg	e Cobble	⊆ Clay	🗌 Large Cobble	
🗁 Silt 🛛 🗆 Sma	II Boulder	∑ Silt	Small Boulde	r
🗄 Sand 📃 Larg	e Boulder	⊆Sand	🗌 Large Boulde	r
Bank Height:	m	Bank Height:	1.7	m
Bank Angle:45	o	Bank Angle:	90	0
Root Depth:	m	Root Depth:	1,2	m
Root Density:	%	Root Density:	-10	%
Undercut:	m	Undercut:	-6-12	m
Erosion Pin:	m	Erosion Pin:	· · · · · · · · · · · · · · · · · · ·	m
	Contract of Contract of Contract			
Penetrometer:	kg/cm²	Penetrometer:		kg/cm ²
Foot Used:	Yes 🗌 No	F	oot Used: 🗆 Yes	□ No

Additional Notes

**Photo Order:** 

Completed by: _____ Checked by: _____

Page _____ of _____

# GEO MORPHIX

Earth Sc Observe

# **Cross-Section Characteristics**

Project Code: 22.045

Date:	2022-0	8-30	Reach/Cross-section:				0	XISS
Weather:	Over cast 22°C		Locatio			Lunder	Va &	The second se
Field Staff:	TT	AA	Water	shed/Subw	atershed:	Silver	Cree	Syan ford
	1100							
5.10 048-	7			Notes		tional Morph		
1.0 0470	0				ZRifi	fle _ Pool	🗆 Run	_ Other
1. 3 0493	3				Substrate		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	N. CONTRACTOR
1. 6 ()51	3				Sample:			
1.8 060	3				G10007174160861846088607258	Bank Subna	avement 🗆 \	Water 🗌 None
.95 0747	5				Pebble Co			
2.10 2118						11	21	21
2.50 240		-			2		22.	and a second
.9 2458	e.e. aut					13		
20 250	7				4.	14	23	
3.70 2649						15		
1.10 2830	2						3.45.90 (CONTRACTOR ) 1.1	35 36
4.45 3000	-			· · · · ·	7.	17.	27.	37
.80 3640	) WL							38
5.30 3148		1.5 ¹⁰⁰			9	19.	29.	39
0.70 3173					10	20.	30	40
0.00 3184					Particle Sh	ape:		_ +0
0.40 3175	5				10. P	Sub-a	ngular - W	ell Rounded
0,90 3186						ular 🗆 Angul		
1.30 3050	2				Rounded	the second s		
1.45 2862	2				Embedednes	s:		%
1.75 2717			1		Subpavemer	nt:	TILL	
8.00 2.554			÷					or [ Very poor
5.40 2425								
5,60 2312	3				Sediment T	ransport		
5.70 6818	- *					and the second	Not Obser	ved
80 0443	BE				If Observed			
.20 6413	e.					d Sliding	_ Rolling	Saltation
.60 0.404						f Bed Active:		
010 0440								/0
					Velocity and	Discharge		
					Velocity:		Method:	
					: Estimated	m/s		
					□ Measured			
			<i>n</i> - 1		Discharge:		I ADV	1.00.0
					: Estimated	m³/s		McBirnev
		-			Measured	m ³ /s	5 ] Other	,

Completed by: _____ Checked by: _____

Page _____ of _____

# GEO

MORPHIX

## **Bank Characteristics**

Project Code: 22045

2022-08-30	Reach/XS:	XS?
ch (Viewed Downstream) Include: ve	egetation type and location, soil horizons, woo	dy debris, roots, etc.
Left Bank		Right Bank
×		
		- benk
		swort
		experie
$\mathbf{X}$		Clau
		Respond
poset in the		-tree roots.

Left Bank Materials			Right Bank Materials		
E Bedrock	□ Gravel		Bedrock	□ Gravel	
_ ⊤ill	🗆 Small Cobb	ole .	⊒ Till	🗆 Small Cobble	
∃ Clay	Large Cobb	le	Clay	🗆 Large Cobble	· · · · ·
2 Silt	□ Small Boul	der	⊇́Silt	Small Boulde	r
_ Sand	🗆 Large Boul	der	∠ Sand	🗆 Large Boulde	r
Bank Height:	1.40	m	Bank Height: _	1.65	m
Bank Angle:	45	0	Bank Angle: _	081	o
Root Depth:	1'.C	m	Root Depth:	-450 -	m
Root Density:	10	%	Root Density: _	50	%
Undercut:	0.29	m	Undercut:	0	m
Erosion Pin:		m	Erosion Pin:		m
Penetrometer:		kg/cm ²	Penetrometer:	2	kg/cm²
F	oot Used: [ Yes	_ No	Foc	ot Used: 🗆 Yes	□ No

Additional Notes

Photo Order:

Completed by: _____ Checked by: _____

Page _____ of _____

# **Cross-Section Characteristics**

2		<			- - -		GEC	C M O Geomorphology Earth Science Observations	RРНІХ	
	ction Cl	haracteri	istics	Derech	Project Code: 27045					
Date:		<u> </u>	06.50			ion:		212	XT	
Weather:		SUCH	VILL	Locatio			Lynden	Kd., Dia	nttard	
Field Staf	6	71	JAA	Water	shed/Subwa	atersned:	-Biller	Creek	- 1	
					Notes	Cross-secti	onal Morpholo	ogy		
								ZRun ⊒O	ther	
				31		L				
						Substrate				
	31.0	Ň	/			Sample:				
i den						Bed Bed	ank 🗹 Subpave	ment 🗆 Wate	r 🗆 None 🖉	
	- 5 - 1	$) \land ($	4			Pebble Cou				
		,			-		11	21.	31	
		× /		-			12.		. /	
							13			
		<u></u>					13			
	· · · · · · · · · · · · · · · · · · ·	62								
4				- an a finance			15 16			
							17			
					<u> </u>	8				
		2			-	9	19	29	39	
10 A		ć I	1. S			10	20	30	40	
5				-1) =		Particle Sh	ape:			
-						] Platy	🗌 🗌 Sub-ang	gular 🗌 Well I	Rounded	
7.1		2				🗆 Very Ang	ular 🗆 Angular	_ ⊆ Sub-I	Rounded	
						Rounded				
						Embedednes	s:	%		
	÷.,					Subpavemer	nt:	11	*) ***	
							Well _ Mode		Very poor	
	9 ₁	1.00	-				1. + - <del>1</del>			
	e.	1				Sediment T	ransport			
	- 20 (	-					bserved [	Not Observed		
			-			If Observed				
						8 552 2	d Sliding	- Rolling	Saltation	
		-	1					0.50		
							of Bed Active: _		%	
						Velocity an	d Discharge			
						Velocity and	a bisenarye	Method:		
				· · · · · · · · · · · · · · · · · · ·			m/s			
	92 -						m/s			
									IELEI	
						Discharge:		I ADV	Dise	
							m³/s		Sirney	
						. Measured	m ³ /s	_ Other		

Completed by: _____ Checked by: _____

Page _____ of ____

ste: 2022 02-30		45	1
	Reach/XS:	X	54
etch (Viewed Downstream) Include: vegetation type and	nd location, soil horizons, woody debris, ro	ots, etc.	
Left Bank		Right Bank	
101 - 1			All and a second
		V	
Kese Sitt.			
Keer h.		y N	
104			
	Ro		
	Cao Er		
	Fines Cu	all repoles	
	graverono	al vS	
	Grand and son grand and son (Upstream	101 231	
ft Bank Materials	Right Bank Materials		
🗄 Bedrock 🗆 🗆 Gravel	Bedrock	□ Gravel	
☐ Till		⊆ Small Cobble	
Clay     □ Large Cobble     Silt     □ Small Boulder	Clay	Large Cobble     Small Baulder	a =
Sand □ Large Boulder	⊑ Silt ⊒ Sand	Small Boulder Large Boulder	
Bank Height: m	Bank Height:	1.9C	m
Bank Angle:	Bank Angle:	50	0
Root Depth: <u>1.20</u> m	Root Depth:	0.5	m
	Root Density:	10	%
Root Density:%			
Undercut: <u> </u>	Undercut:	. (Q	m
0.0	Undercut: Erosion Pin:		m m
Undercut: <u> </u>			

## С

	0.001 - 551 - 21		t Code: 22245
Date:	2011-06-50	Reach/Cross-sect	lion:
Weather:	Sunny 2200	Location:	Lynden Kd, Eranttard
Field Staff:	AAUTT	Watershed/Subw	atershed: Silver Creek:
		Notes	Cross-sectional Morphology
1.00 008	5		□ Riffle □ Pool □ Run □ Other
1.50 010	00	к. 	
1.00 013	E		Substrate
2.50 017	9		Sample:
3.00 024	22		🖻 Bed 🛛 Bank 🗹 Subpavement 🗆 Water 🗆 None
2.20 02	5-		Pebble Count (cm):
5:51 62	15		1. <u>5</u> 11. <u>SAND</u> 21. <u>0.7</u> 31. <u>6.5</u>
3 45 246			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5.60 262	X		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5.95 301	ONE		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
J.45 501	2		$\begin{array}{c} 5. \ \hline \\ 0. \ \hline \\ 0. \ \hline \\ 0. \ \hline \\ 16. \ \hline \\ 26. \ \hline \\ 1. \ \hline \\ 26. \ \hline \\ 1. \ \hline \\ 36. \ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
150 791	2		7. <u>0</u> ⁻ 17. <u>4.2</u> 27. <u>6.9</u> 37. <u>1.1</u>
5.20 289	6		8. 0.4 18. 3.7 28. 0.7 38. Clay
5 50 78-	70		9. 0.7 19. 18 29. 0.7 39. 1
5.80 25	17		8. $0.4$ 18. $3.7$ 28. $0.7$ 38. $clay$ 9. $0.7$ 19. $1.8$ 29. $0.7$ 39. $1$ 10. $0.7$ 20. $1.6$ 30. $0.4$ 40.
70 279	8		Particle Shape:
060 277	)9		🗄 Platy 🖉 Sub-angular 🗄 Well Rounded
10076	39		🗆 Very Angular 🗌 Angular 📑 Sub-Rounded
7,46 258	31		Rounded
7.80 247	3		Embededness:%
8.20 270	16		Subpavement:
8.50 212	8		Sorting:  Well Moderate  Poor Very poor
8.85 693	.Ч		
9.0 077	7.8		Sediment Transport
7.30 028	30 BF.		Observed     I Not Observed
T.SO 607	19		If Observed:
10.00 000	<u></u>	С.	Suspended Sliding Rolling Saltation
10.4000	13		Percentage of Bed Active:%
			Velocity and Discharge
			Velocity: Method:
			Estimated m/s
-			☐ Measuredm/s ☐ Current Meter
		1 1 L 2	Discharge:

: Estimated I Measured _m³/s I Other

Completed by: _

Checked by:

Page _____ of _____

GEO MORPHIX Geomorpholo Earth Science Observations

# GEO MORPHIX Geomo Earth S Project Code: 77045 **Bank Characteristics** 8-30 Reach/XS: XSS Date: Sketch (Viewed Downstream) Include: vegetation type and location, soil horizons, woody debris, roots, etc. Left Bank **Right Bank** nunet V R gravel

Left Bank Materials		<b>Right Bank Materials</b>	<b>;</b>	
🗌 Bedrock 🗆 🗆 Gravel		Bedrock	□ Gravel	
_ Till   □ Small Co	bble	⊟ Till	🗆 Small Cobble	e
Clay 🛛 Large Co	bble	Clay	🗆 Large Cobble	e
∑Silt	ulder	Silt	🗆 Small Boulde	er
Sand 🗆 Large Bo	ulder	± Sand	🗆 Large Boulde	er
Bank Height:	m	Bank Height:	1.90	m
Bank Angle:75	•	Bank Angle:	796	0
Root Depth:5	m	Root Depth:	1.2	m
Root Density:	%	Root Density:	_ 55	%
Undercut:	m	Undercut:	0.28	m
Erosion Pin:	m	Erosion Pin:	<u> </u>	m
Penetrometer:	kg/cm ²	Penetrometer:	-	kg/cm²
Foot Used: Yes	⊒ No	F	oot Used: 🗆 Yes	⊏ No

**Additional Notes** pins installed to 0.2m VESICA Photo Order: US, DS, UE, RB

Completed by: _____ Checked by: _____

Page _____ of _____

# GEO MORPHIX Geomorphology Earth Selence Observations

# **Cross-Section Characteristics**

Project Code: 22045

Date:	702-08-30	Reach/Cross-section:	XSG
Weather:	OLEICAST 22°C	Location:	Unain Rati Brandad
Field Staff:	AAIT	Watershed/Subwatershed:	Silver Crees
		Notes Cross-se	ectional Morphology

			☐ Riffle └─Pool □ Run □ Other
	-		Substrate
			Sample:
			Bed [ Bank Z Subpavement D Water D None
K I I	1 1		Pebble Count (cm):
/			1 11 21 31
			2 12 22 32
			3 13 23 33
			4 14 24 34
			5 15 25 35
			6 16 26 36
			7 17 27 37
			8 18 28 38
1			9 19 29 39
			10 20 30 40
1			Particle Shape:
			E Platy E Sub-angular E Well Rounded
			□ Very Angular □ Angular □ Sub-Rounded
			I Rounded
			Embededness: %
		5 A	Subpavement:
		A.	Sorting:  Well  Moderate  Poor  Very poo
	and he are a second sec	v	
			Sediment Transport
1	1.1		Observed     I Not Observed
	-	-	If Observed:
	15		Suspended Sliding Rolling Saltation
		с. 	Percentage of Bed Active:%
			-
			Velocity and Discharge
			Velocity: Method:
			Estimated m/s _ Wiffle ball
			Measuredm/s     Current Meter
			Discharge: CADV
			Estimated m ³ /s I Marsh McBirney

Completed by: _____ Checked by: _____

Page _____ of _____

# Bank Characteristics Project Code: MORPHIX Date: 101-01-01 Reach/XS: Eketch (Viewed Downstream) Include: vegetation type and location, soil horizons, woody debris, roots, etc. Left Bank Right Bank Right Bank Kexposed Hill Kexposed Hill Kexposed Hill Kexposed

Left Bank Materials			<b>Right Bank Material</b>	S	
E Bedrock	□ Gravel		Bedrock	: Gravel	
_ ⊤ill	🗆 Small Cobb	e	二 Till	□ Small Cobble	
∠ Clay	🗆 Large Cobb	e	Clay	□ Large Cobble	
Silt	🗆 Small Bould	er	⊆ Silt	🗆 Small Boulder	
🗌 Sand	🗆 Large Bould	er	Sand	🗆 Large Boulder	
Bank Height:	. 157	m	Bank Height:		m
Bank Angle:	75-	0	Bank Angle:	-70	o
Root Depth:	0.5	m	Root Depth:	1.00	m
Root Density:	50	%	Root Density:	-25	%
Undercut:	0.59	m	Undercut:	0	m
Erosion Pin:		m	Erosion Pin:		m
			5. 0 CTCT		
Penetrometer:		kg/cm ²	Penetrometer:		kg/cm ²
F	oot Used: 7 Yes	⊒ No		Foot Used: 🗆 Yes	⊏ No

dditional Notes		
A COMPANY	2, giới	
hoto Order: US, pS	LB, RB	
		Completed by: Checked by:

# GEO

# MORPHIX

# **Cross-Section Characteristics**

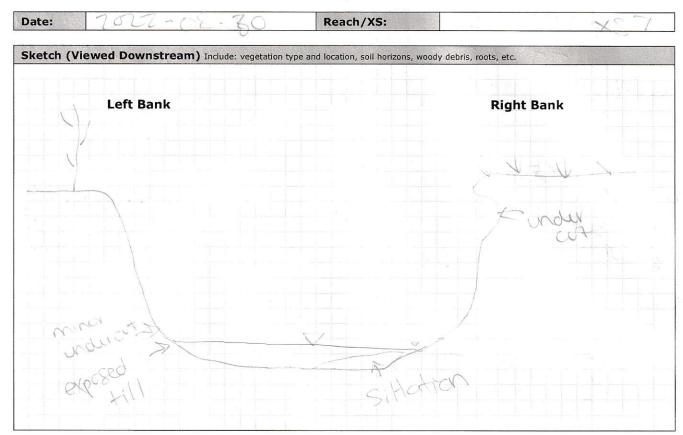
4,80

Project Code: 20 45

Date:	1. A.	7072-5	8-30	Reach,	/Cross-sec	tion: XS 7		
Weather	•	·	and 22°C	Location:				
Field Sta	off:	ST	AA	Watershed/Subwatershed: Silvey Creek.				
						Unite Charles		
Dist	Ele				Notes	Cross-sectional Morphology		
2,90	2316					🗆 Riffle 🗆 Pool 🔛 Run 🗆 Other		
3.40	2419							
, 70	2532					Substrate		
3.90	7.660	BF.				Sample:		
0, N	3010		-			$\Box$ Bed $\Box$ Bank $\Box$ Subpavement $\Box$ Water $\Box$ None		
4:10	3107				1	Pebble Count (cm):		
4.15	3560					1 11 21 31		
1,30	3818					2 12 22 32		
4.00	4022					3 13 23 33		
5.10	4059	NU	×	-		4 14 24 34		
5.30	4099				-	5 15 25 35		
5,55	4139					6 16 26 36		
O:O	4173				19 - N	7 17 27 37		
1.0	4151					8 18 28 38		
6.45	1/210					9 19 29 39		
0.90	4105			. 3 ²		10 20 30 40		
7.20	4039				5	Particle Shape:		
1.50	3760					□ Platy □ Sub-angular □ Well Rounded		
1.75	3703			10.00		□ Very Angular □ Angular □ Sub-Rounded		
8.00	5513	9				Rounded		
8.40	3379			1		Embededness:%		
6,70	3109			-		Subpavement:		
8,50	2949			8.3		Sorting:  Well Moderate Poor Very poor		
8.85	320		1					
9.25	2145					Sediment Transport		
9.70	2152		-			□ Observed □ Not Observed		
10,10	1140			1		If Observed:		
07.0	2142					□ Suspended □ Sliding □ Rolling □ Saltation		
				11		Percentage of Bed Active: %		
-				SOLO.				
						Velocity and Discharge		
						Velocity: Method:		
						Estimated m/s      Wiffle ball		
			0			□ Measuredm/s □ Current Meter		
					-	Discharge:		
						□ Estimated m ³ /s □ Marsh McBirney		
						$\square$ Measured $m^3/s \square$ Other		

Completed by:

Page ____ of ___


Checked by: _

#### GEO MORPHIX

# **Bank Characteristics**

Photo Order: US DS LUCE

**Project Code:** 



Left Bank Materials			<b>Right Bank Materia</b>	ls	
Bedrock	Gravel		Bedrock	Gravel	
🗆 Till	Small Cobb	le	🗆 Till	Small Cobble	
Clay	□ Large Cobb	le	Clay	Large Cobble	
⊡ Silt	Small Bould	ler	Silt	Small Boulder	
🖻 Sand	🗆 Large Bould	ler	Sand	Large Boulder	
Bank Height:	1.75	m	Bank Height:	2.00	m
Bank Angle:	85	0	Bank Angle:	10	0
Root Depth:	1.10	m	Root Depth:	0.75	m
Root Density:	50	%	Root Density:	10	%
Undercut:	0.25	m	Undercut:		m
Erosion Pin:	·	m	Erosion Pin:		m
					2
Penetrometer:		kg/cm ²	Penetrometer:		kg/cm ²
F	Foot Used: 🗆 Yes	🗆 No		Foot Used: 🗆 Yes	🗆 No
		nigh.	N		
Additional Notes					
	1), (F)	inter "			
2					

Completed by: ____ Checked by: ___

# GEO

# MORPHIX

## **Cross-Section Characteristics**

Project Code: 7 2045 🔥

Date: 2027-09-36	Reach/Cross-section:	and the KB
Weather: Overrat 220	Location:	A. 4
Field Staff:	Watershed/Subwatershed:	

					Notes	Cross-sectional Morphology
						🗆 Riffle 🗆 Pool 🖾 Run 🗆 Other
	. /					
05	Y					Substrate
K	1	-				Sample:
						🛛 Bed 🕞 Bank 🖾 Subpavement 🗆 Water 🗆 None
/			ta str			Pebble Count (cm):
						1. Fines. 11 21 31
÷.						2 12 22 32
						3 13 23 33
			×			4 14 24 34
				- 1-		5 15 25 35
						6 16 26 36
n 1						7 17 27 37
						8 18 28 38
						9 19 29 39
						10 20 30 40
						Particle Shape:
						Platy     Sub-angular     Well Rounded
-						□ Very Angular □ Angular □ Sub-Rounded
						□ Rounded
	×					Embededness:%
				4.,		Subpavement:
		-				Sorting:  Well Moderate Poor Very poor
		1.0	1			4 ( )
						Sediment Transport
· ·				0		Observed     Not Observed
- C						If Observed:
						□ Suspended □ Sliding □ Rolling □ Saltation
						Percentage of Bed Active: %
						Velocity and Discharge
						Velocity: Method:
						Estimated m/s      Wiffle ball
						Measuredm/s     Current Meter
						Discharge:
						□ Estimated m ³ /s □ Marsh McBirney
						$\Box$ Measuredm ³ /s $\Box$ Other

Completed by: _____ Checked by: _____

Page _____ of _____

# GEO MORPHIX Geomorphology Earth Science Observations

## **Bank Characteristics**

Project Code: 27245

te: 2022-08-30	Reach/XS:	X	38
etch (Viewed Downstream) Include: veg	etation type and location, soil horizons, woody	debris, roots, etc.	
Left Bank		Right Bank	
		y y y	
		Fallen log Xposed	
		Clay	
Silt ation			

eft Bank Materials	S		<b>Right Bank Materials</b>		
Bedrock	□ Gravel		Bedrock	□ Gravel	
🗆 Till	Small Cobb	le	🗆 Till	Small Cobble	
Clay	Large Cobb	le	Clay	Large Cobble	
🛛 Silt	Small Bould	ler	Silt	Small Boulder	r
Sand	🗆 Large Bould	ler	□ Sand	Large Boulder	r
Bank Height:	1.22	m	Bank Height: _	1,41	m
Bank Angle:	60	0	Bank Angle: _	75	0
Root Depth:	0.2	m	Root Depth: _		m
Root Density:	15	%	Root Density:	25	%
Undercut:	0	m	Undercut: _	0	m
Erosion Pin:		m	Erosion Pin:		m
Penetrometer:		kg/cm ²	Penetrometer: _		kg/cm ²
	Foot Used:	🗆 No	Foo	ot Used: 🗆 Yes	🗆 No

Photo Order: US, DS, LB, KB

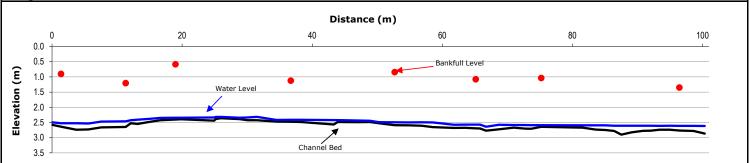
Completed by: _____ Checked by: _____

# Appendix F Detailed Assessments

# GEO

Geomorpholo Earth Science

# Detailed Geomorphological Assessment Summary Reach SC-A-5


<b>Project Number:</b>	PN22045	Date:	2022-08-30		
Client:	Sorbara	Length Surveyed (m):	100.3		
Location:	Lynden Rd., Brantford	# of Cross-Sections:	8		

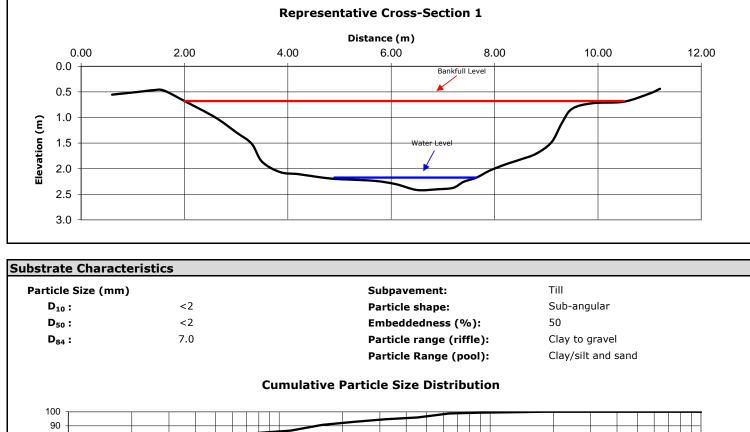
Reach Characteristics					
Drainage Area:	597 ha	Dominant Riparian Vegetation Type:	Trees		
Geology/Soils:	Laminated Glaciolacustrine Tills	Extent of Riparian Cover:	Continuous		
Surrounding Land Use:	Agricultural	Width of Riparian Cover:	>10 channel widths		
Valley Type:	Confined	Age Class of Riparian Vegetation:	Mature (>30 years)		
Dominant Instream Vegetation Ty	ype: N/A	Extent of Encroachment into Channel:	Minimal		
Portion of Reach with Vegetation	: N/A	Density of Woody Debris:	High		

Hydrology			
Measured Discharge (m ³ /s):	0.07	Calculated Bankfull Discharge (m ³ /s):	6.70
Modelled 2-year Discharge (m ³ /s):	Not modelled	Calculated Bankfull Velocity (m/s):	1.11
Modelled 2-year Velocity (m/s):	Not modelled		

Profile Characteristics		Planform Characteristics	
Bankfull Gradient (%):	0.34	Sinuosity:	1.45
Channel Bed Gradient (%):	0.32	Meander Belt Width (m):	Not measured
Riffle Gradient (%):	1.70	Radius of Curvature (m):	Not measured
Riffle Length (m):	9.55	Meander Amplitude (m):	Not measured
Riffle-Pool Spacing (m):	15.69	Meander wavelength (m):	Not measured

# Longitudinal Profile




Bank Characteristics							
	Minimum	Maximum	Average		Minimum	Maximum	Average
Bank Height (m):	1.22	2.00	1.68				
Bank Angle (deg):	45	90	71	Torvane Value (kg/cm ² ):		Not measured	
Root Depth (m):	0.20	1.50	0.90	Penetrometer Value (kg/cm ³ ):		Not measured	
Root Density (%):	5	50	22	Bank Material (range):			
Bank Undercut (m):	0	0.75	0.17				

## **Cross-Sectional Characteristics**

	Minimum	Maximum	Average
Bankfull Width (m):	4.70	8.50	6.02
Average Bankfull Depth (m):	0.80	1.20	1.01
Bankfull Width/Depth (m/m):	4	8	6
Wetted Width (m):	1.73	2.90	2.18
Average Water Depth (m):	0.08	0.17	0.12
Wetted Width/Depth (m/m):	11	26	20
Entrenchment (m):		Not measured	
Entrenchment Ratio (m/m):		Not measured	
Maximum Water Depth (m):	0.00	0.29	0.21
Manning's <i>n</i> :		0.053	



Photograph at cross section 1 (looking upstream)



Grain size (mm)

100

10

80 70

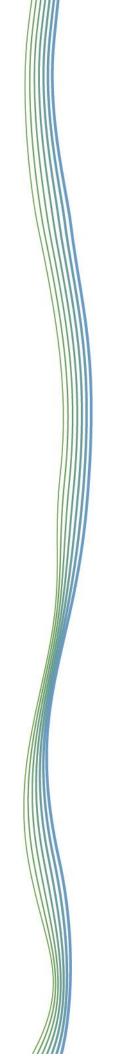
60 -50 -40 -30 -20 -10 -0 -1

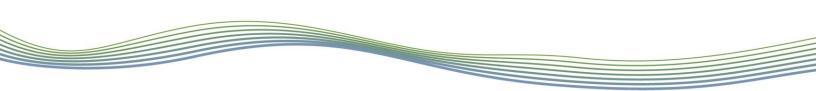
Percent finer

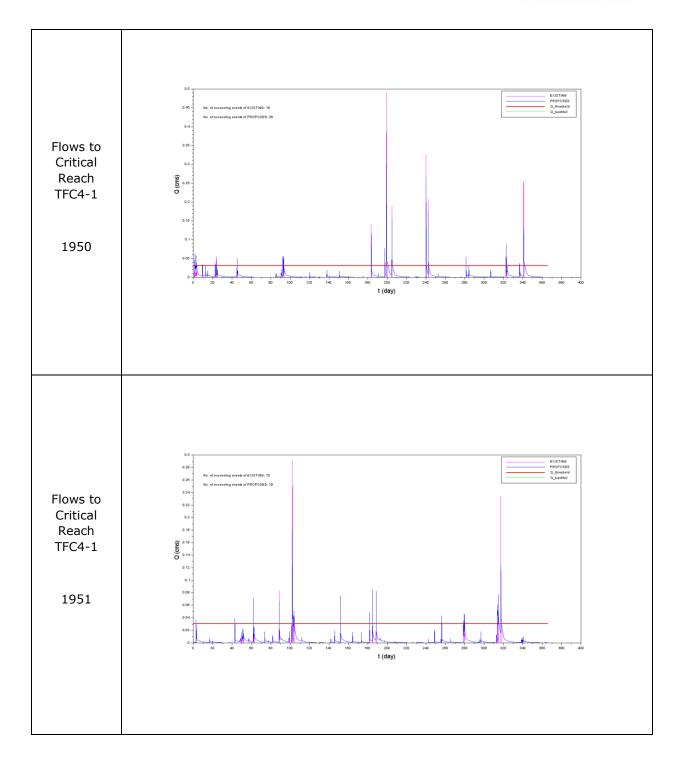
1000

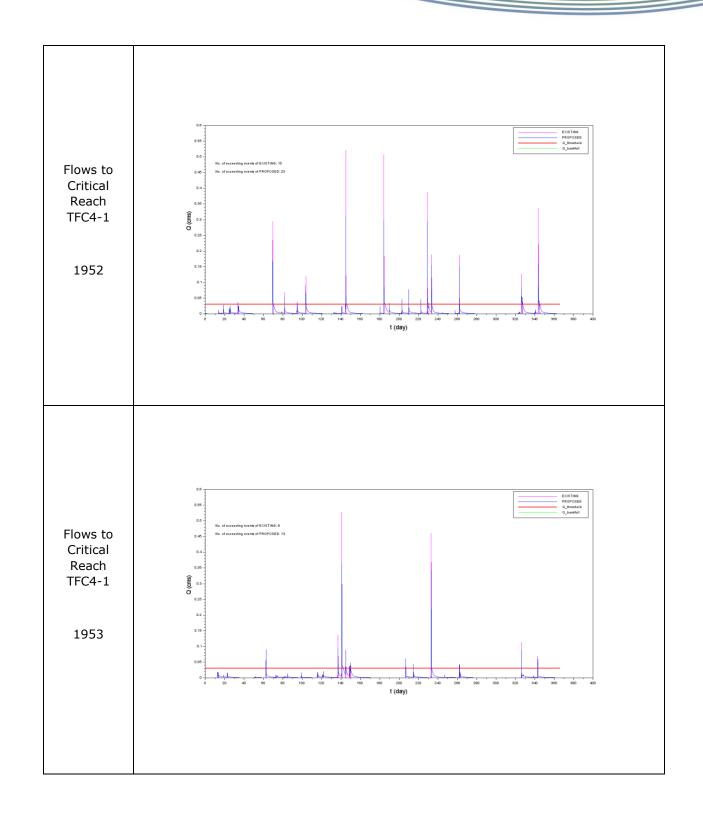
Channel Thresholds			
Flow Competency (m/s):		Tractive Force at Bankfull (N/m ² ):	33.59
for D ₅₀ :	n/a	Tractive Force at 2-year flow (N/m ² ):	Not modelled
for D ₈₄ :	0.48	Critical Shear Stress (D ₅₀ ) (N/m ² ):	0.00
Unit Stream Power at Bankfull (W/m ² ):	37.12		

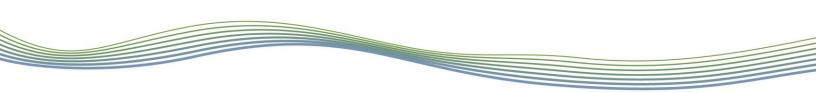
## **General Field Observations**

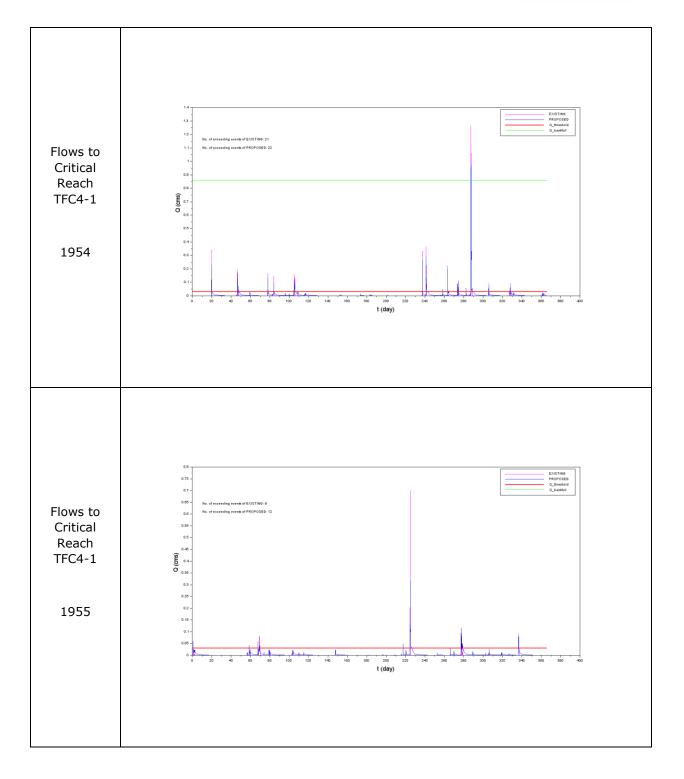

### **Channel Description**

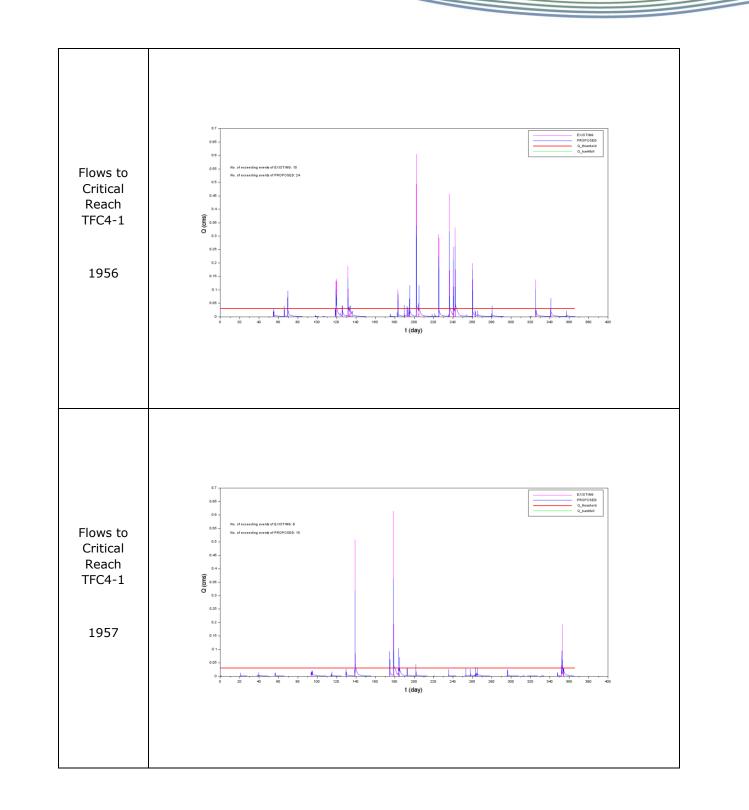

Reach SC-A-5 was an irregularly meandering channel with a moderate gradient, situated within a confined valley. Adjacent land use consisted of forests. Riparian cover was continuous and spanned over 10 channel widths, primarily consisting of trees. Bed substrate was comprised of clay to cobble sized particles. The banks were sparesly vegetated and showed signs of heavy erosion and undercutting throughout the reach. Few locations along the reach had contact with the valley wall. A high density of woody debris was present within the channel and cutbanks at the time of assessment.

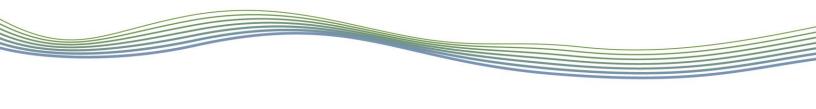

## **Cross Section 5 - Facing Downstream**

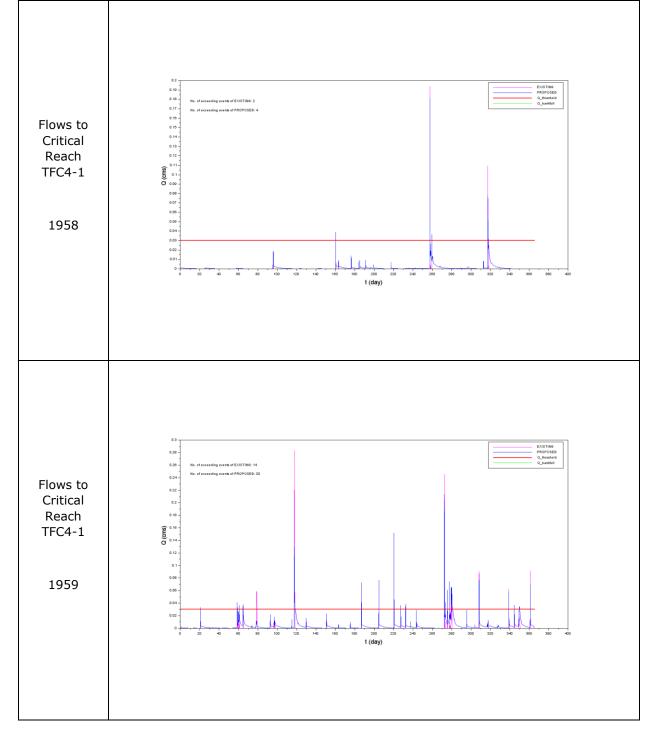


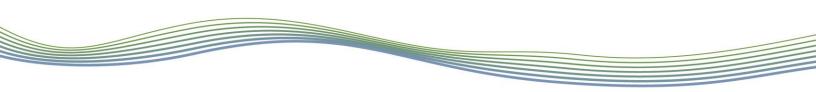



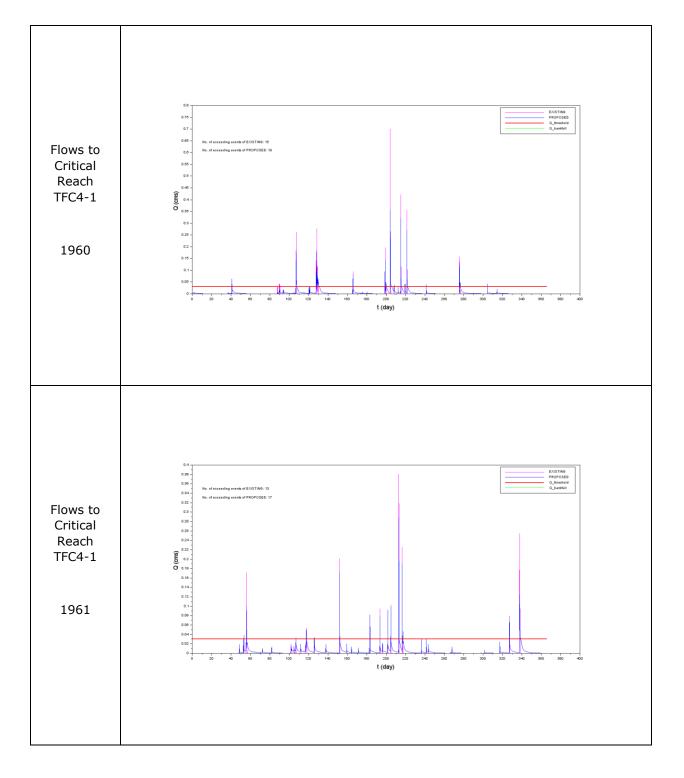



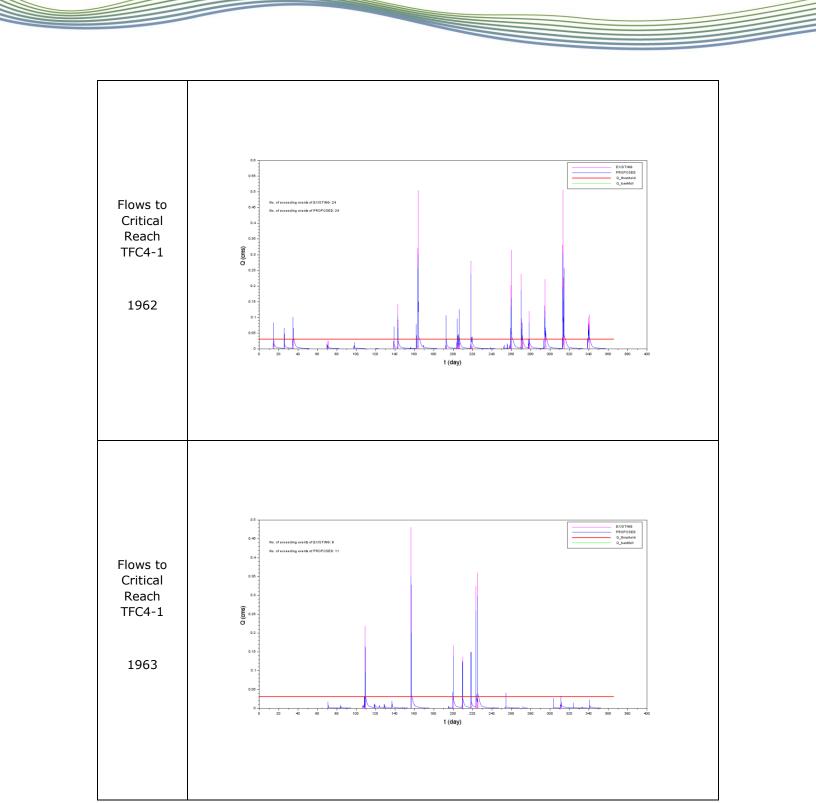



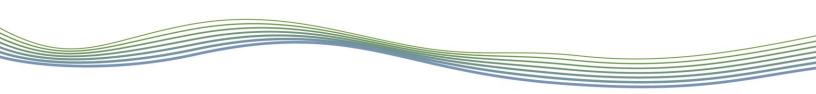



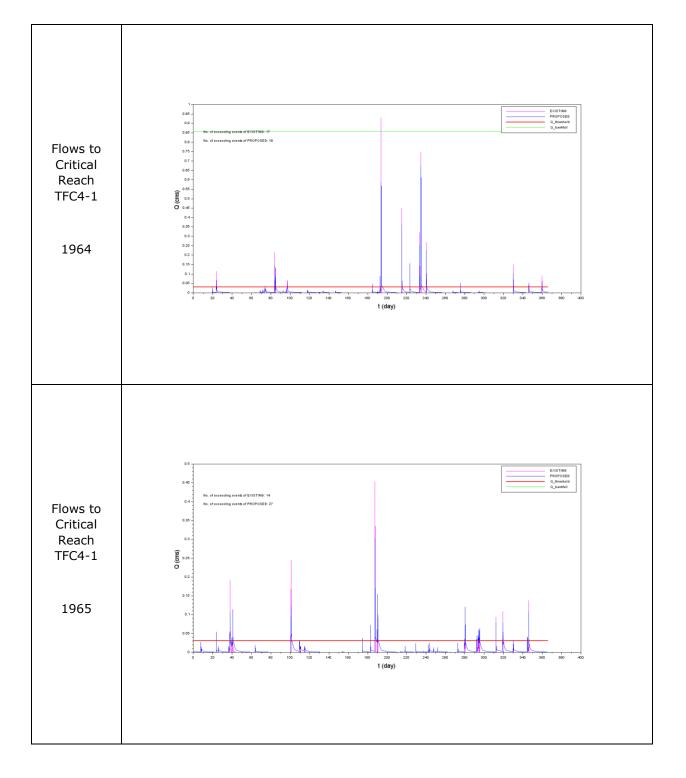



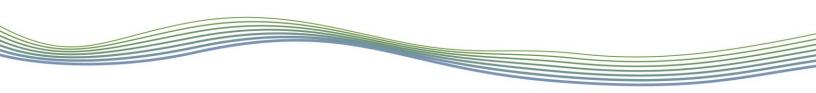



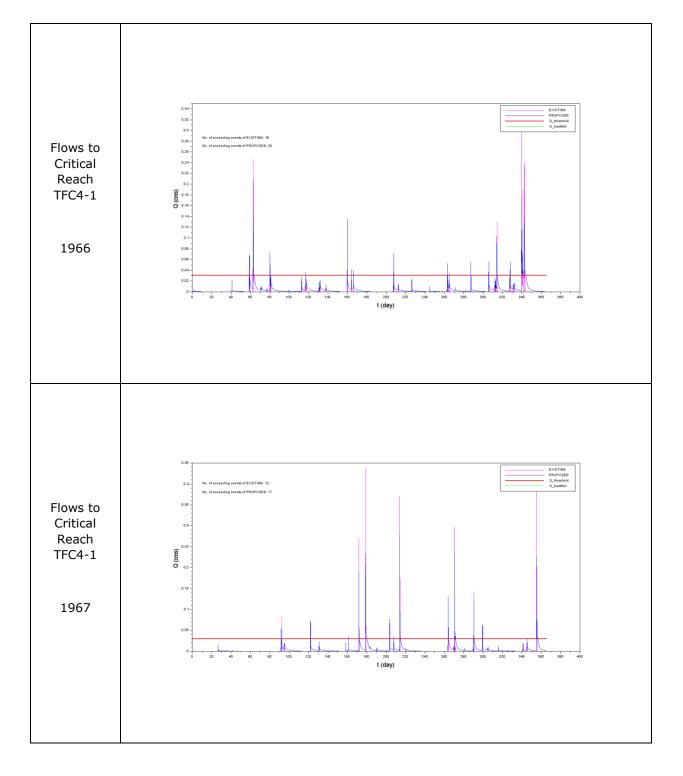



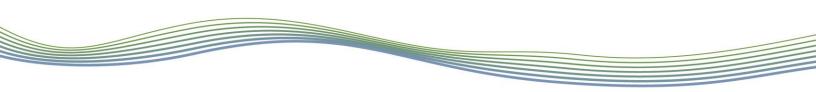



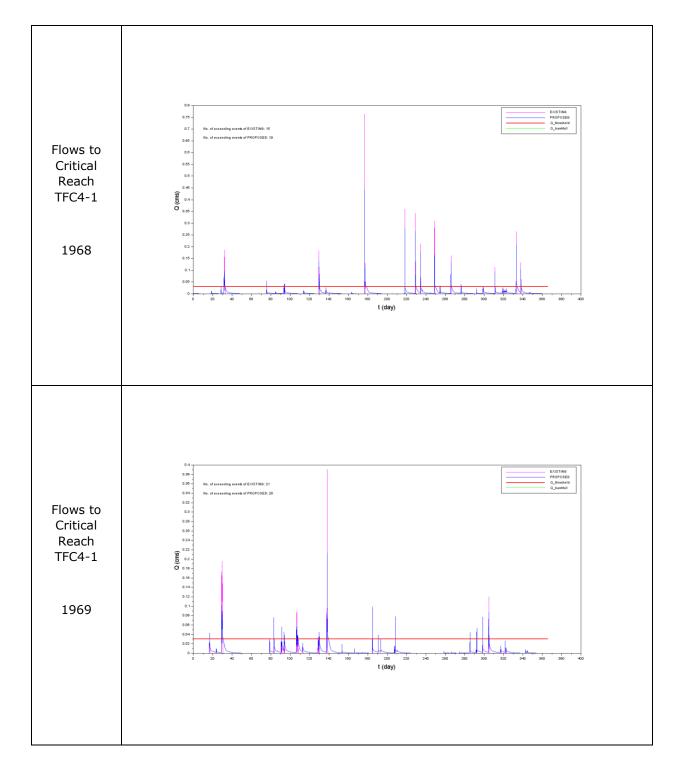



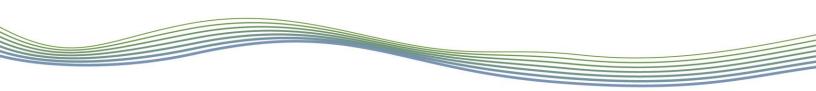



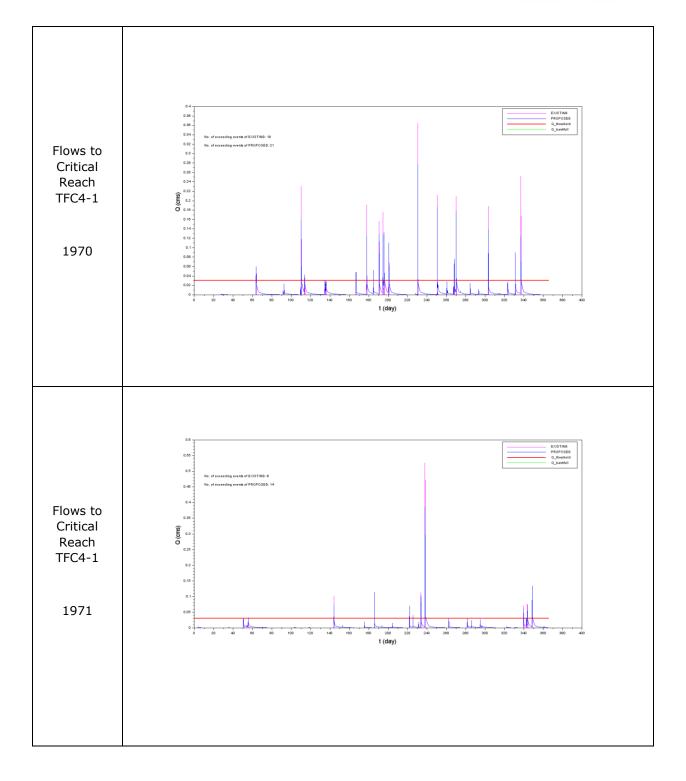



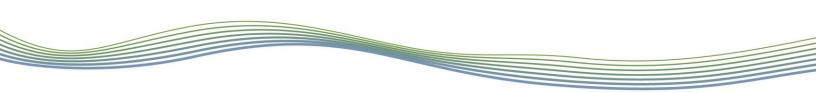



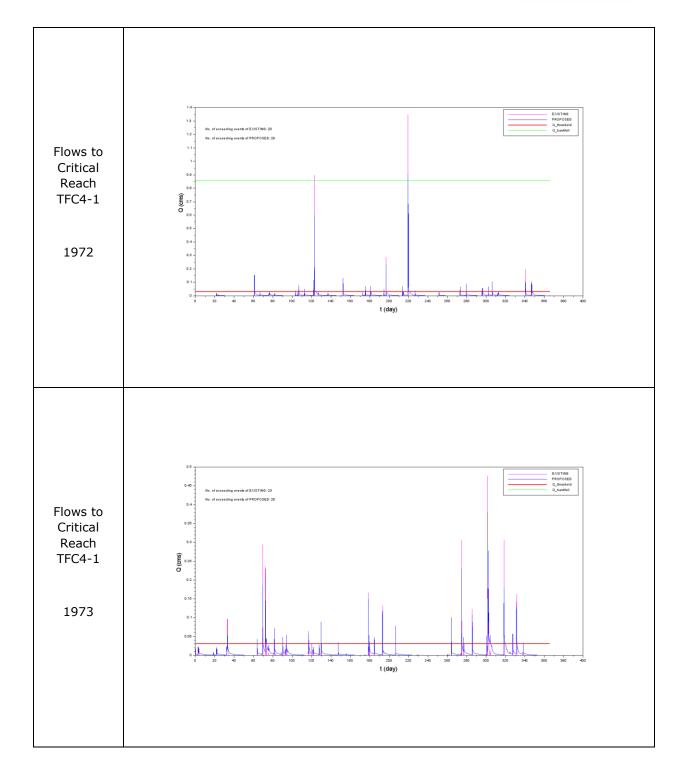



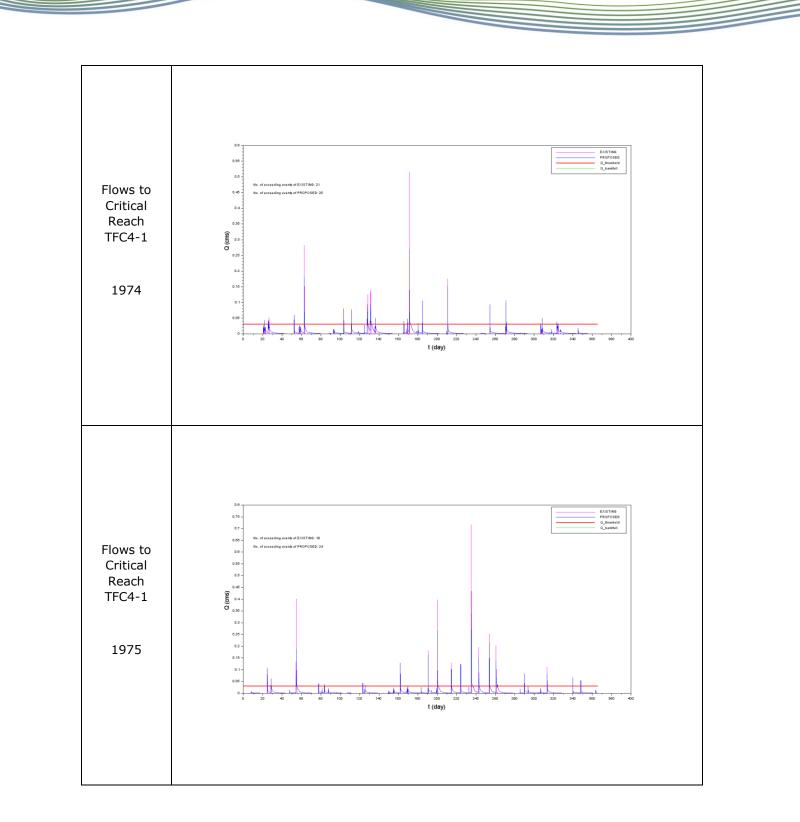



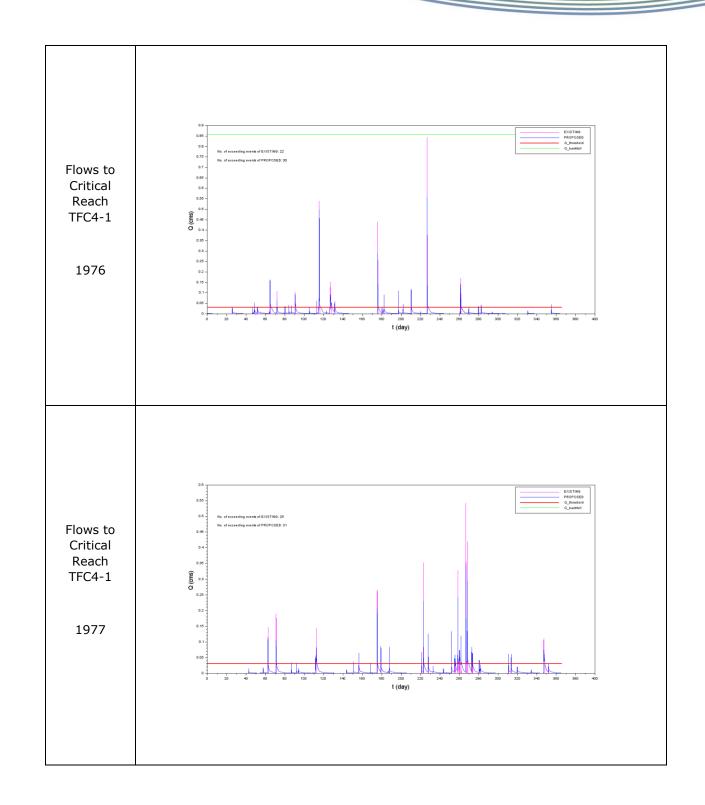



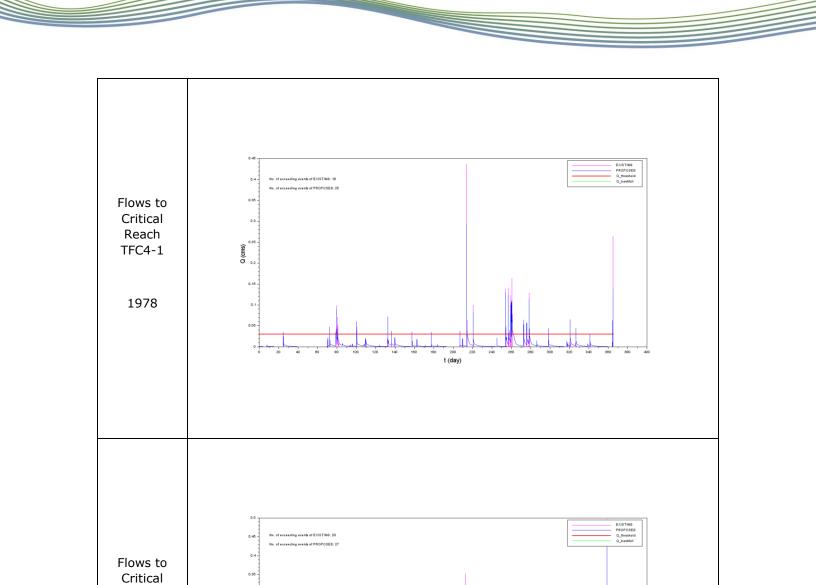







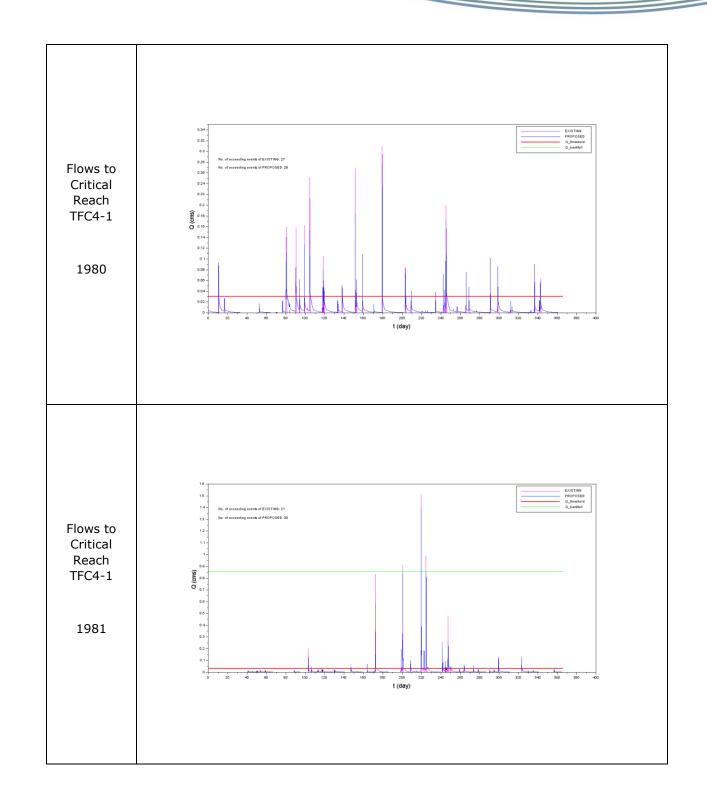


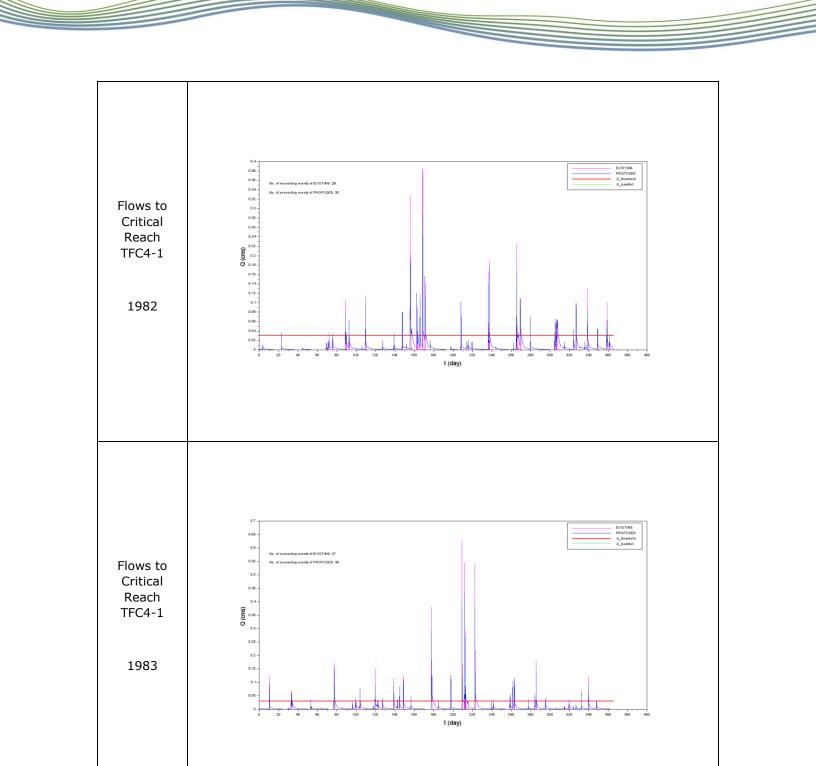


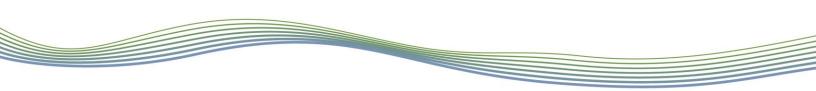


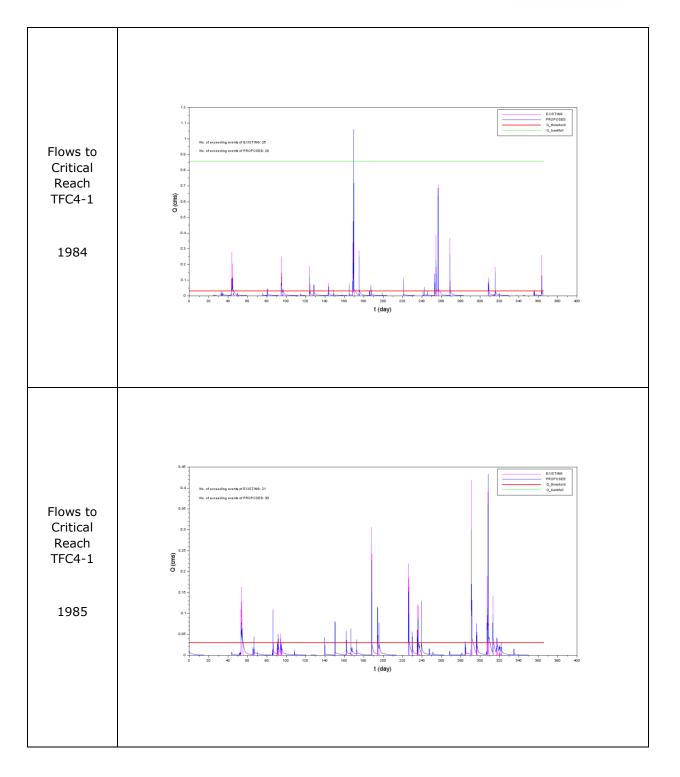

200 t (day)

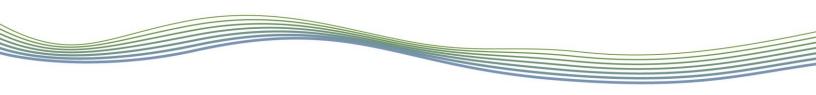
0.3

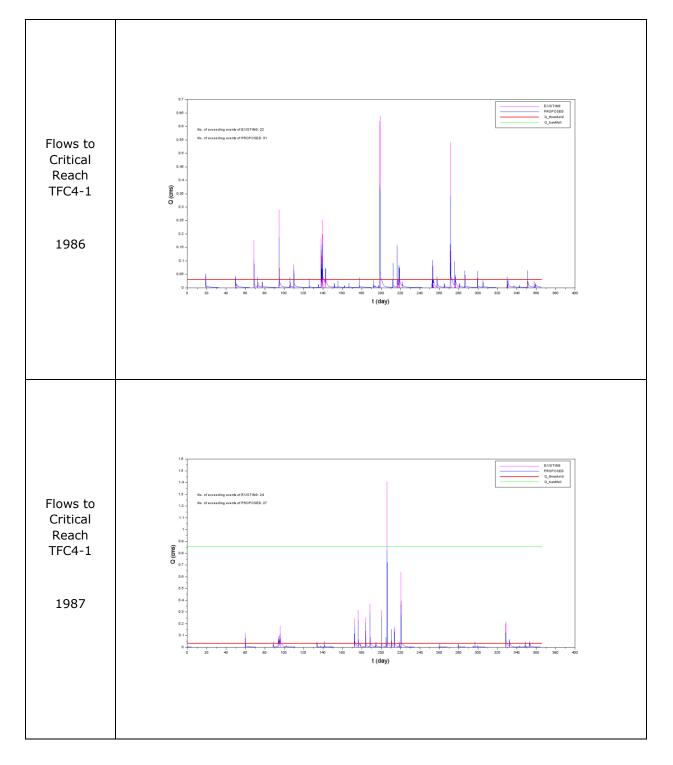

0.1

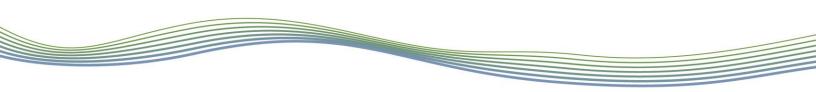

0.26 0.2 0.16

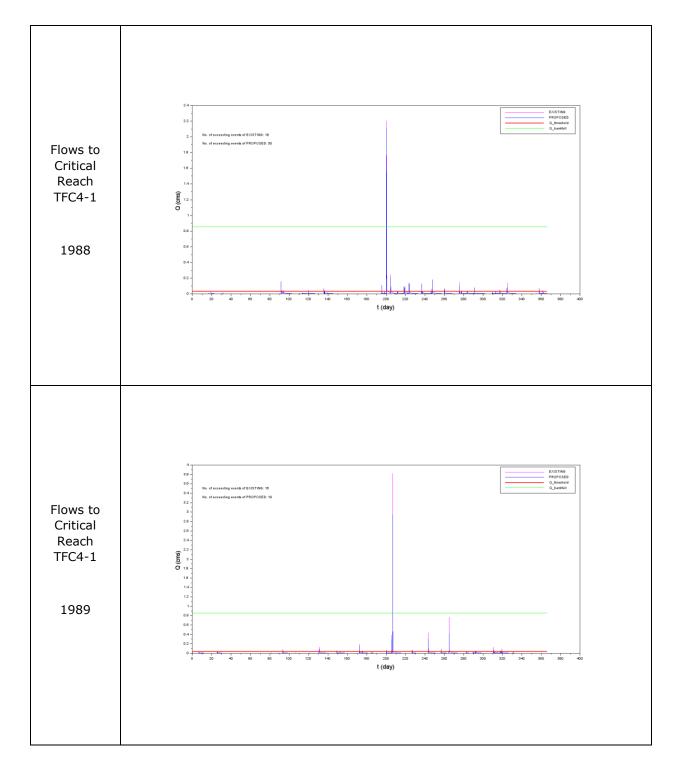

Reach

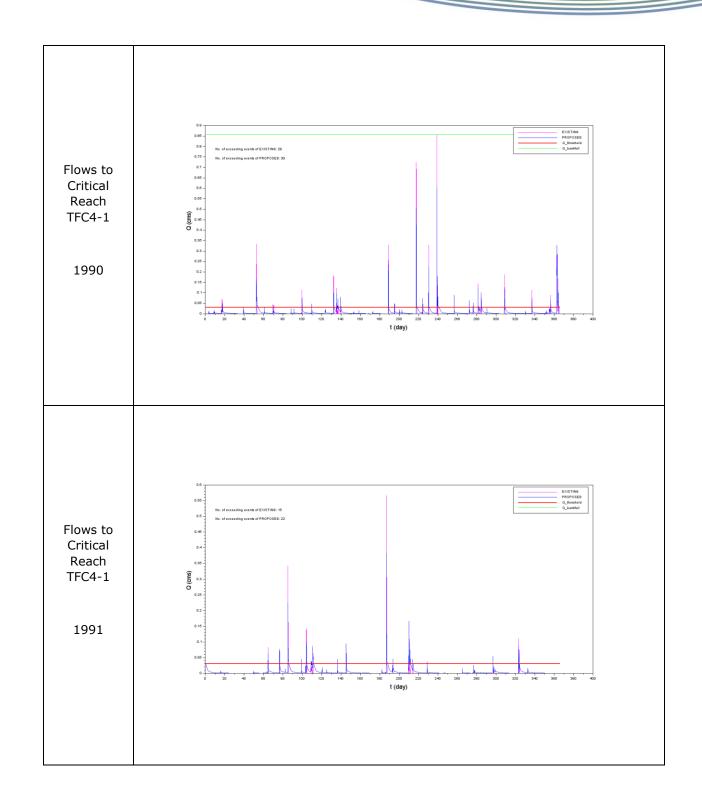

TFC4-1

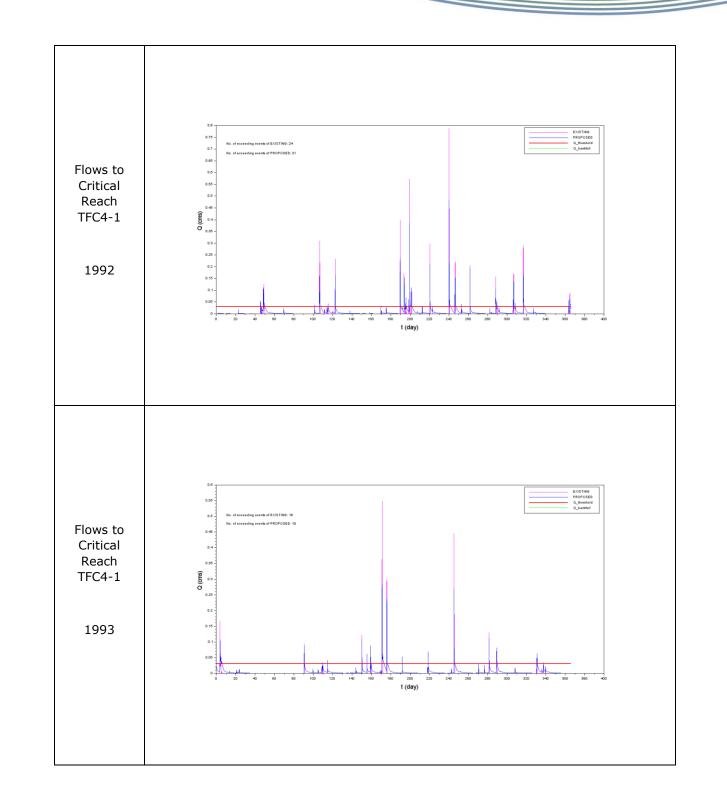

1979

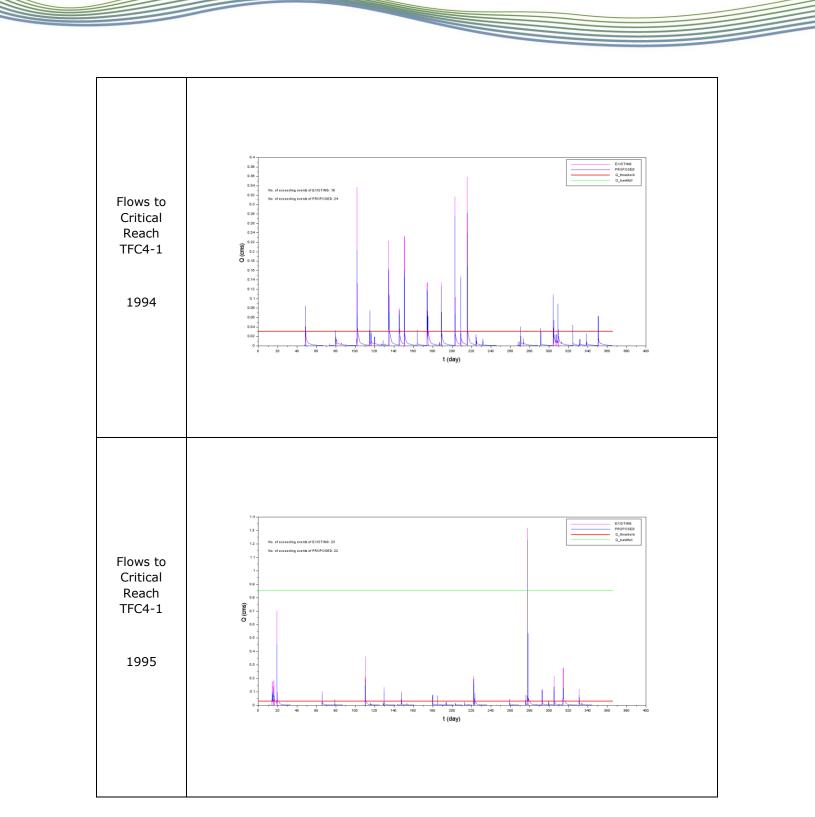


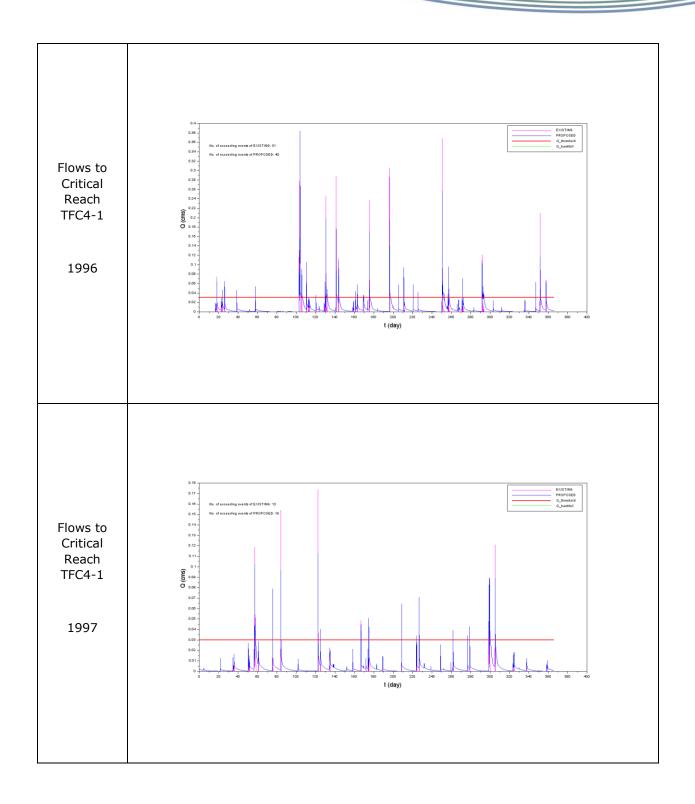



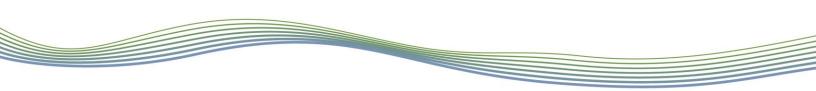



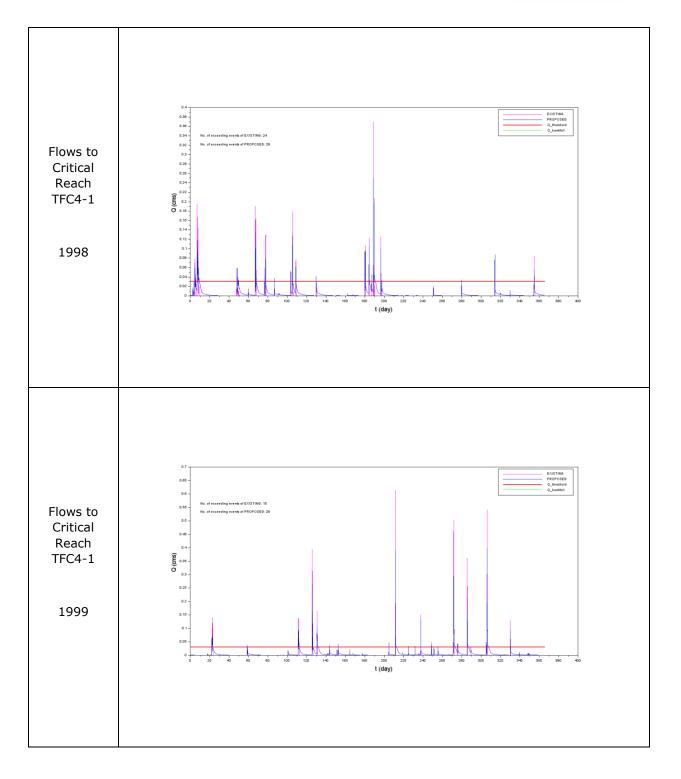



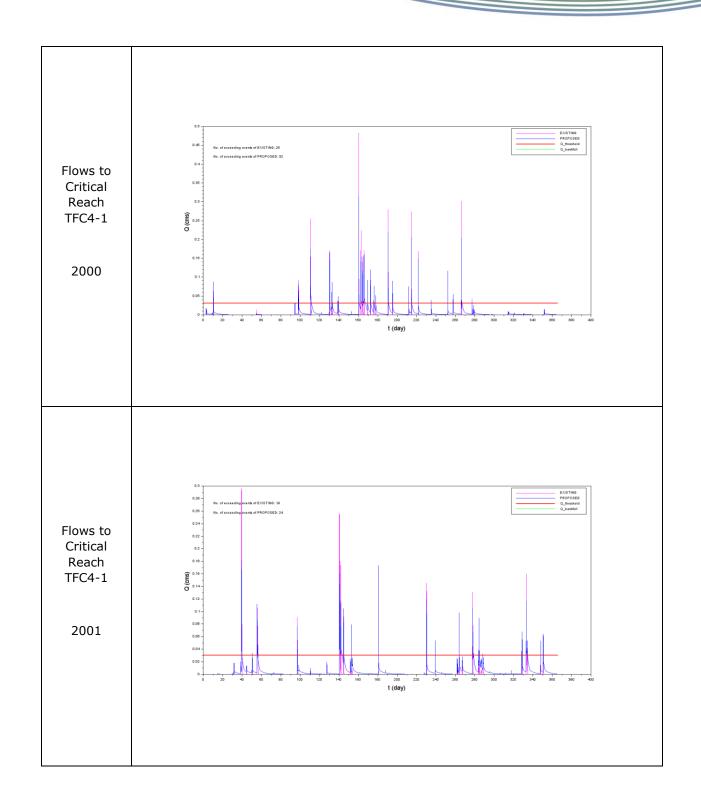



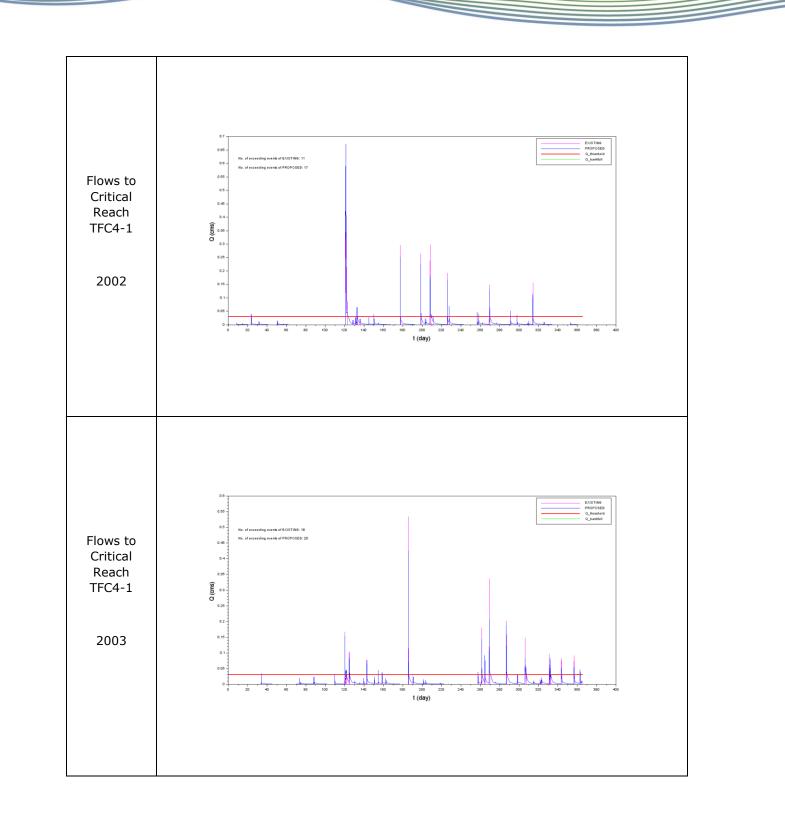



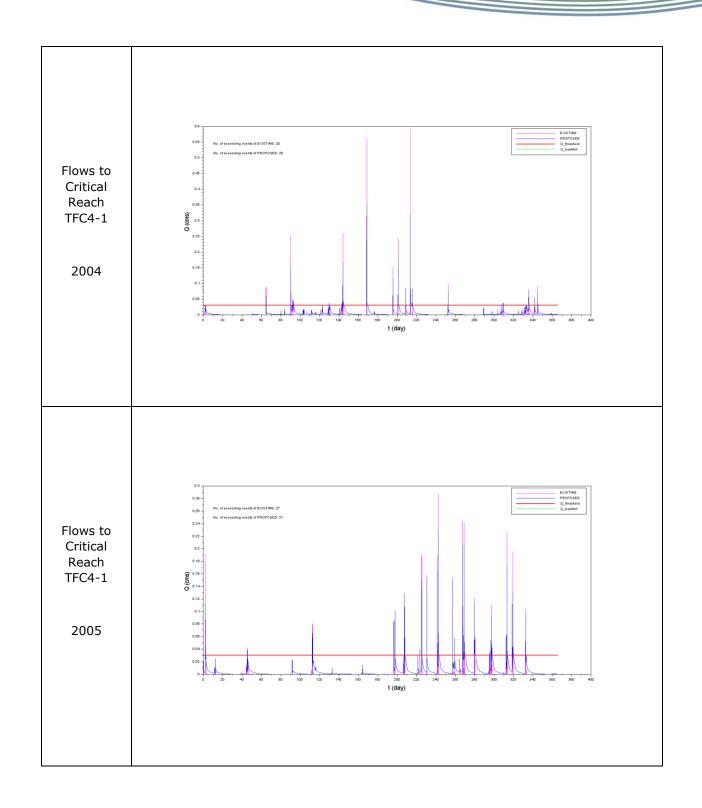



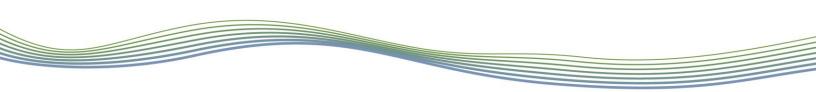



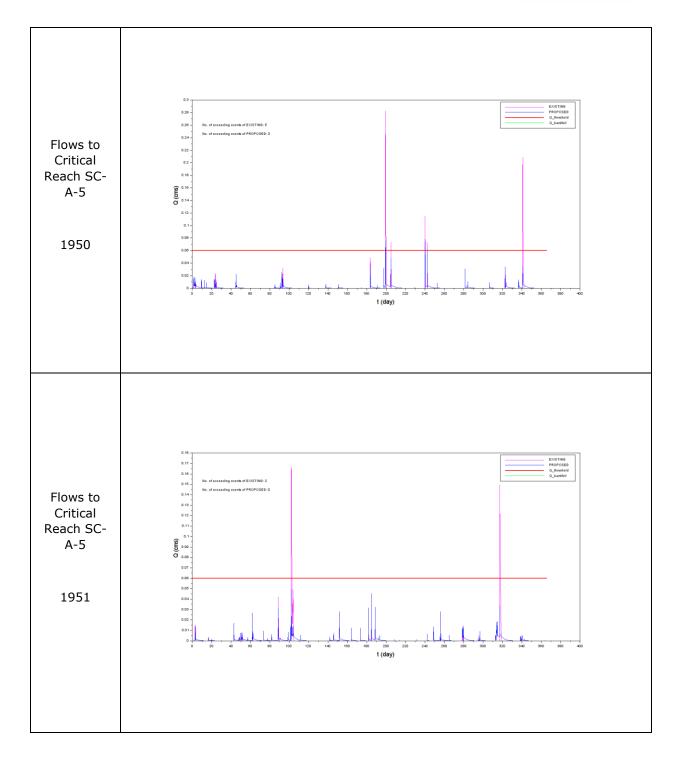



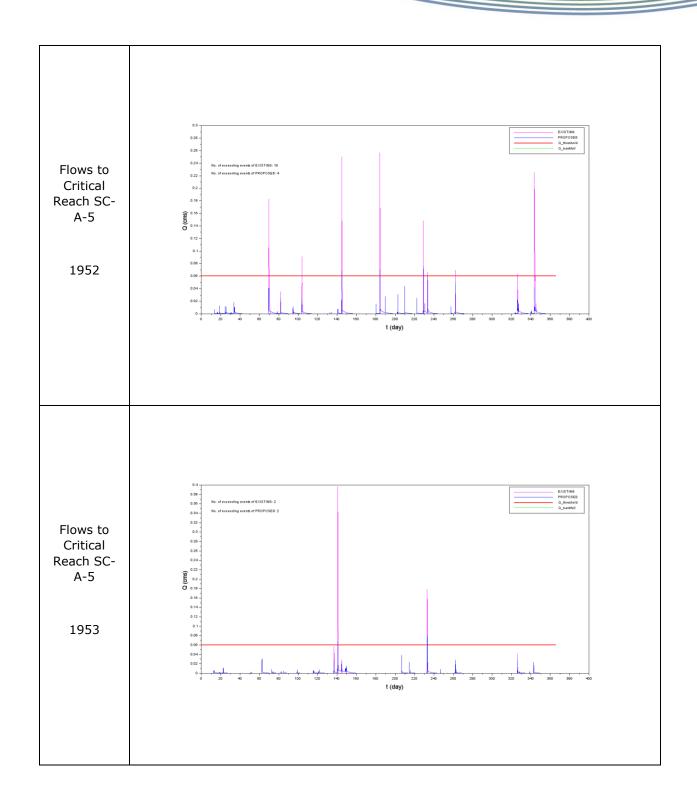


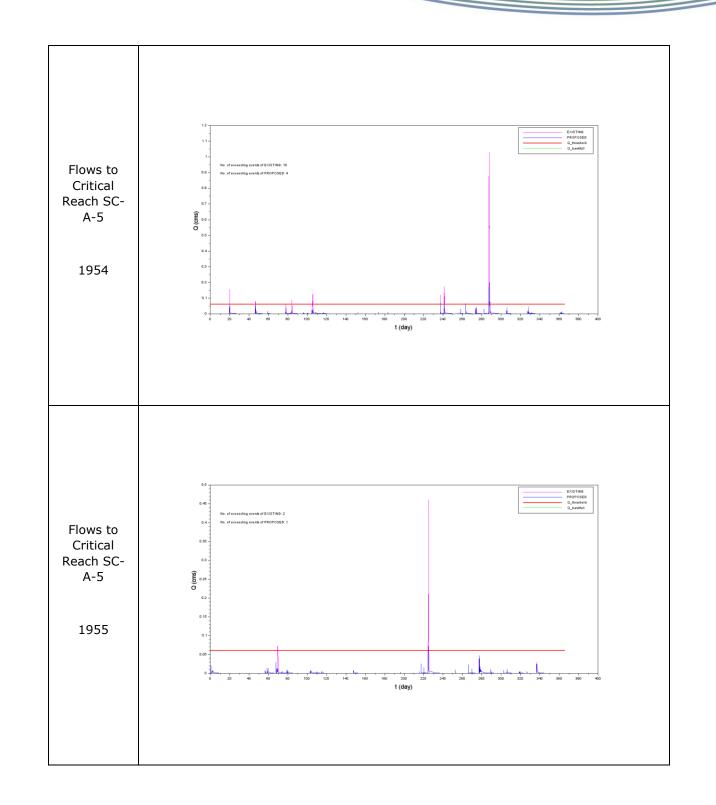



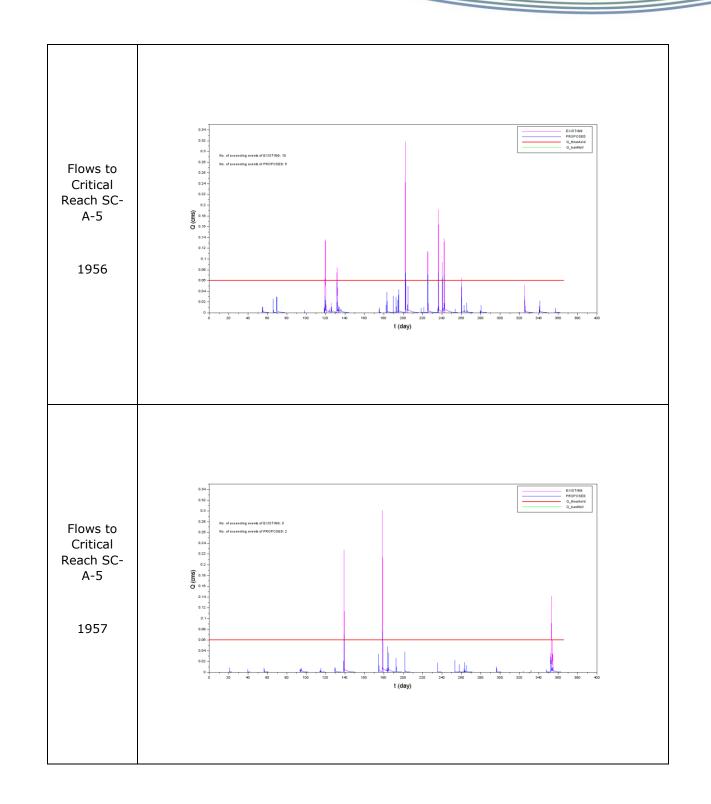


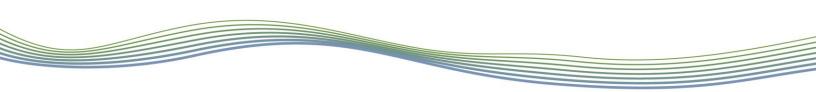



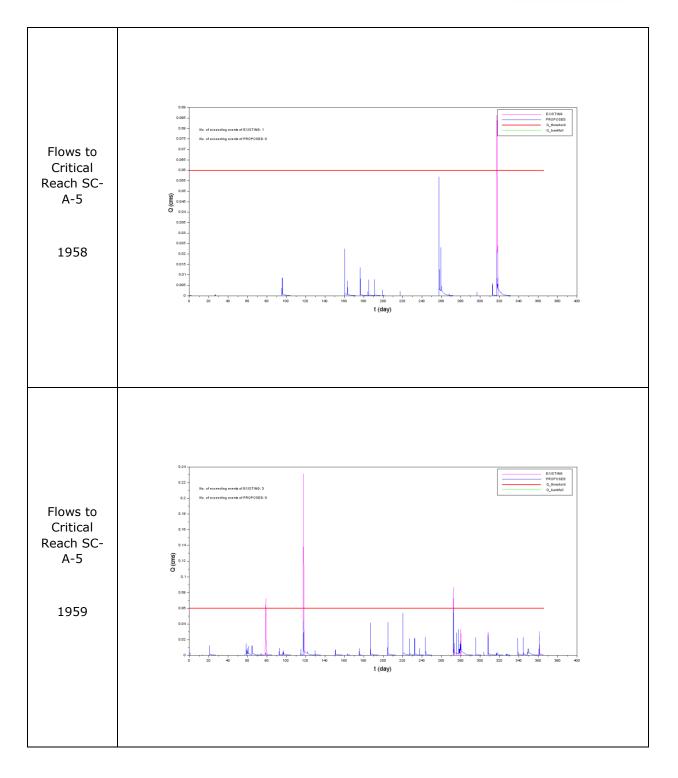


xxvii



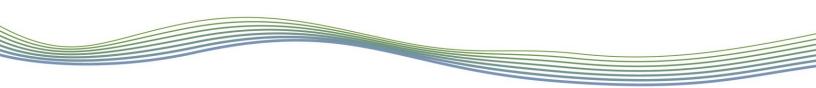


xxviii

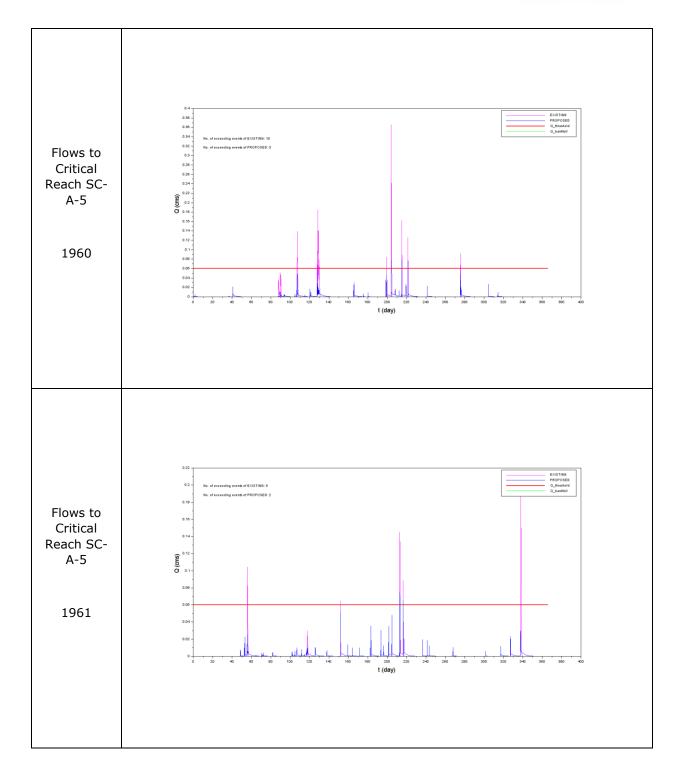




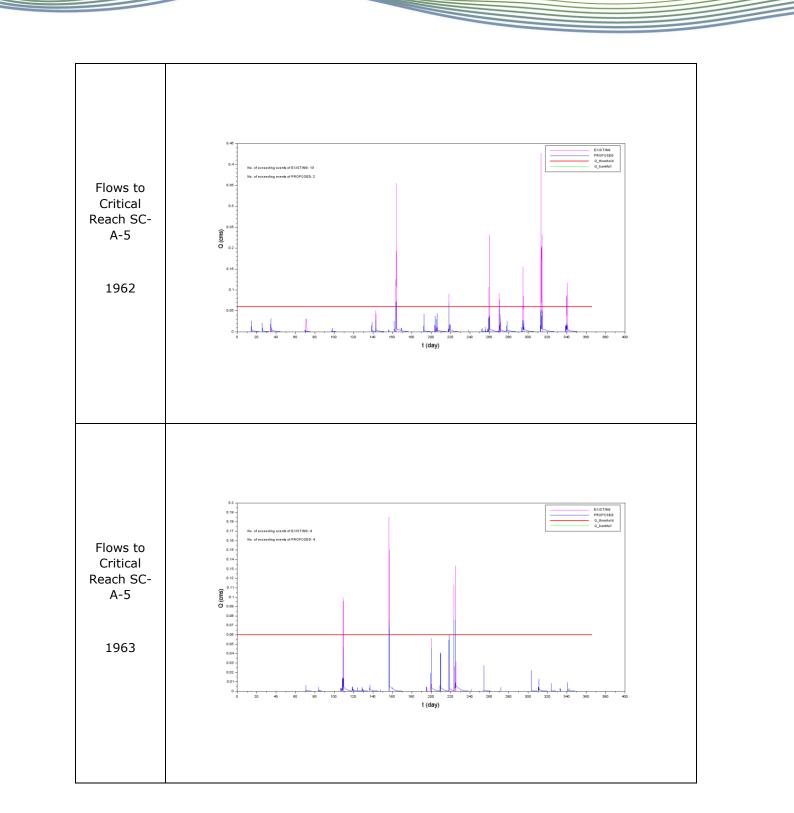





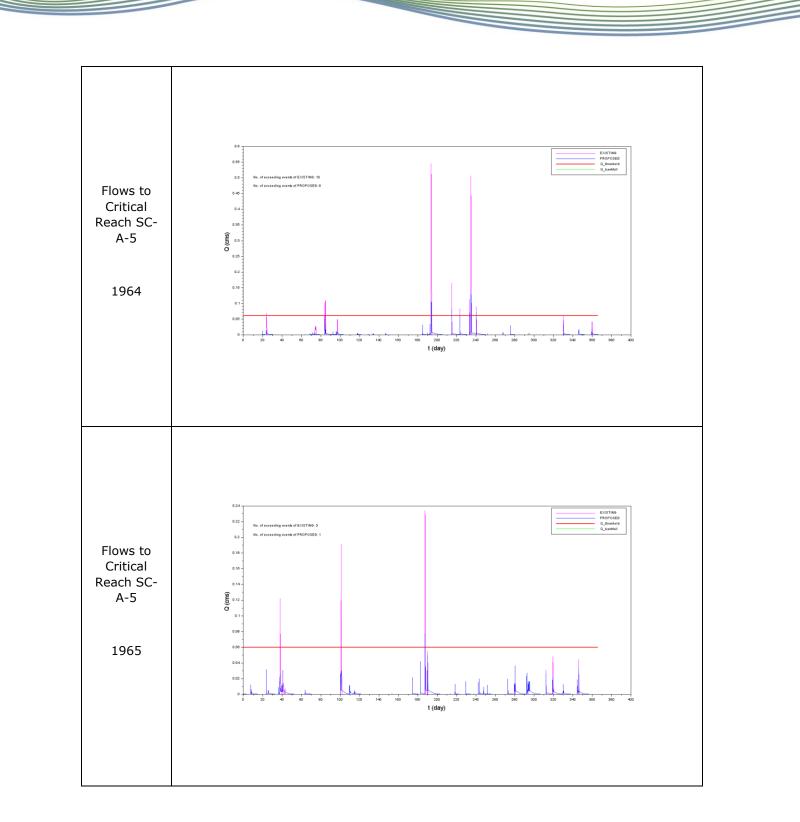





xxxii





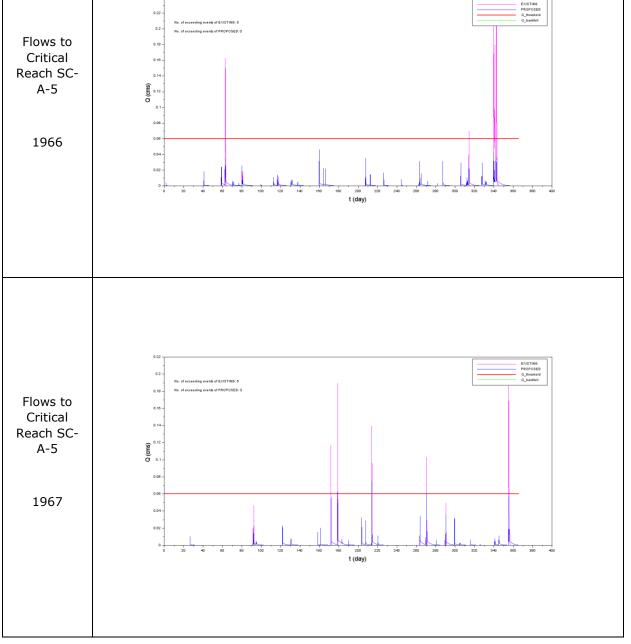

xxxiii



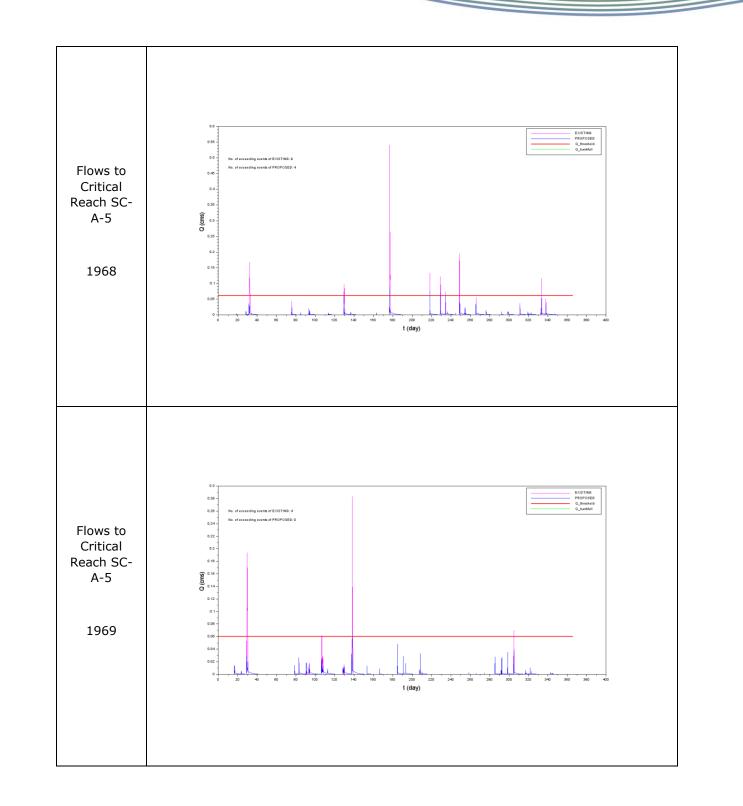




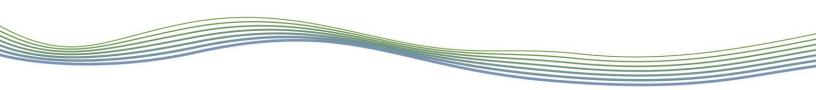
xxxiv

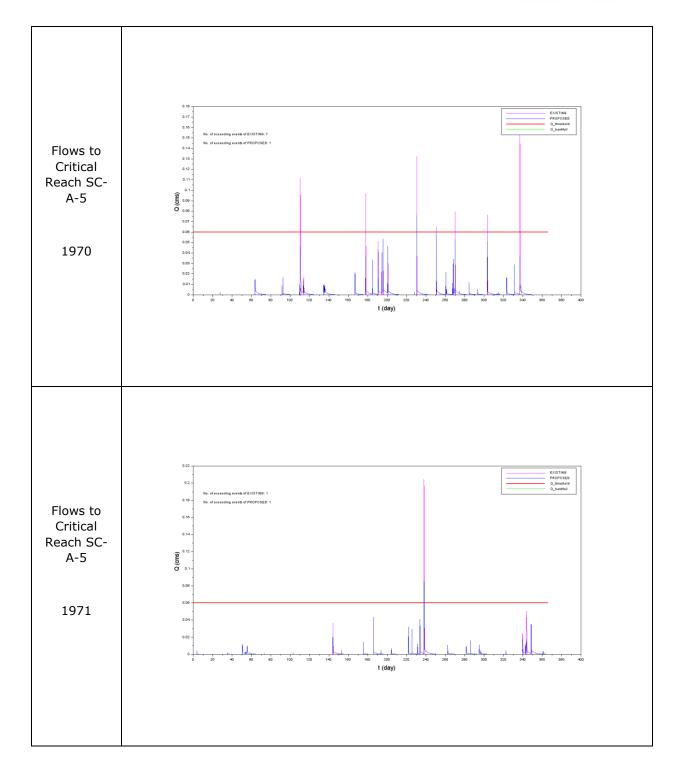


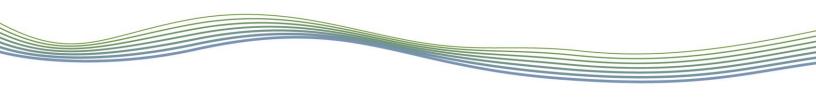

XXXV



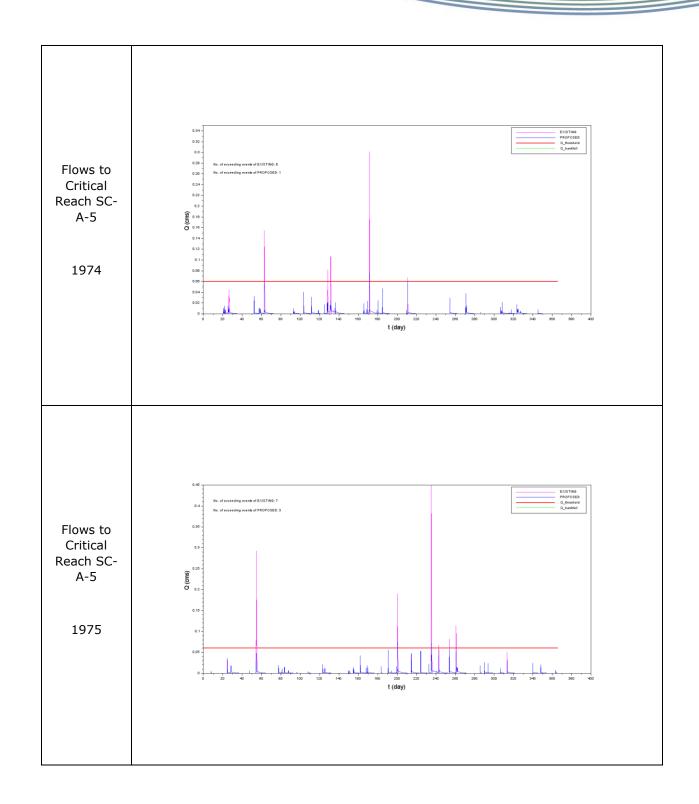

xxxvi

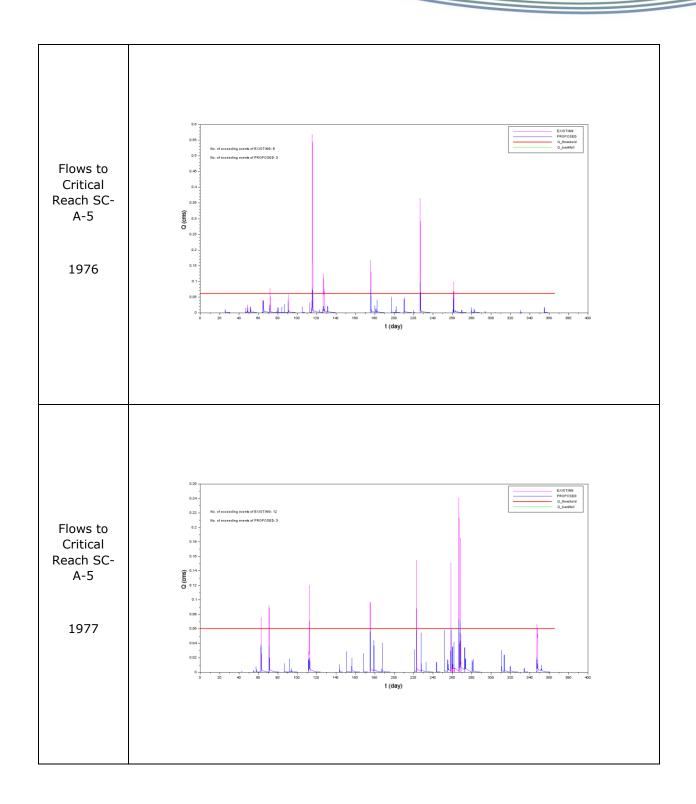


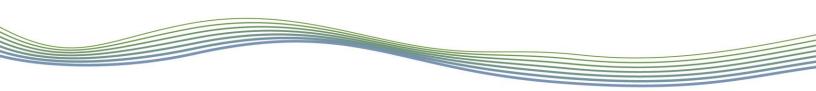



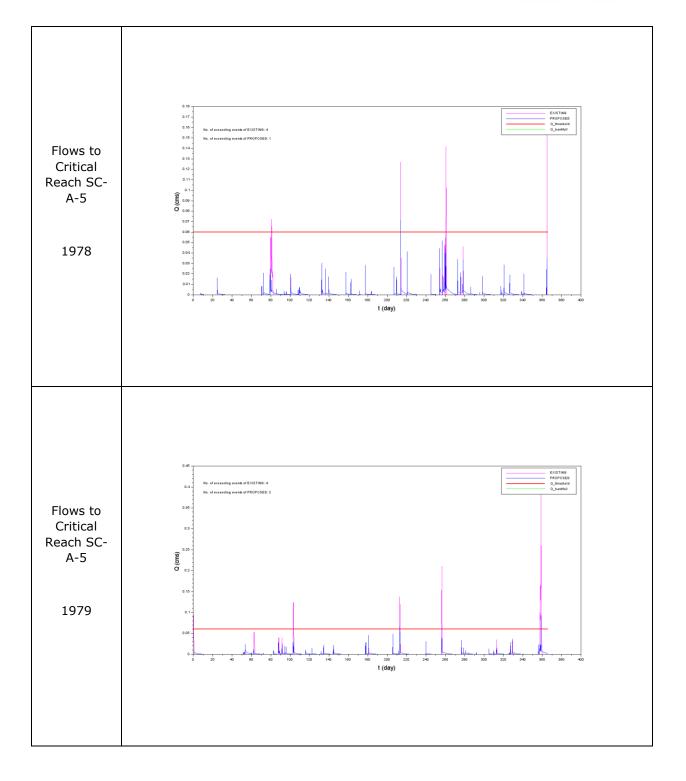


xxxvii

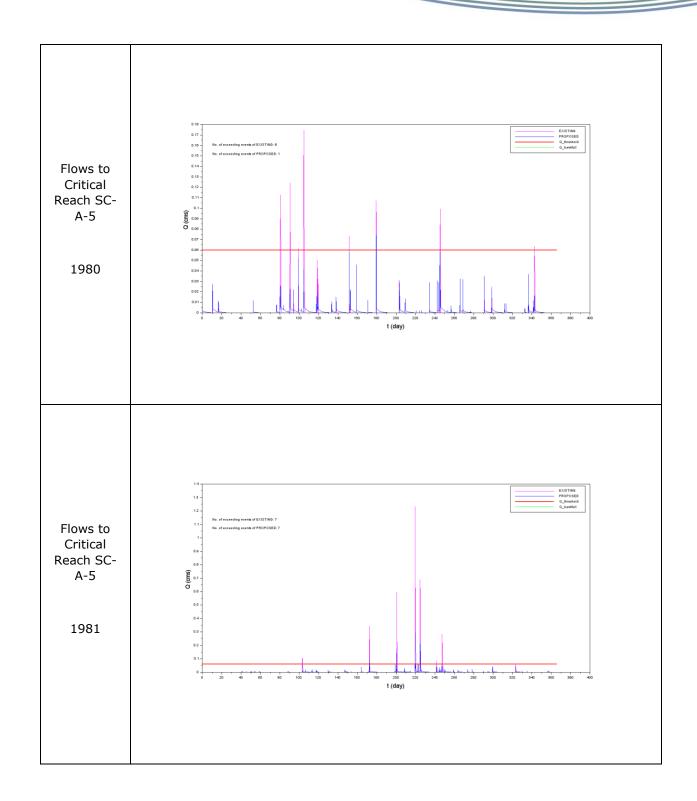


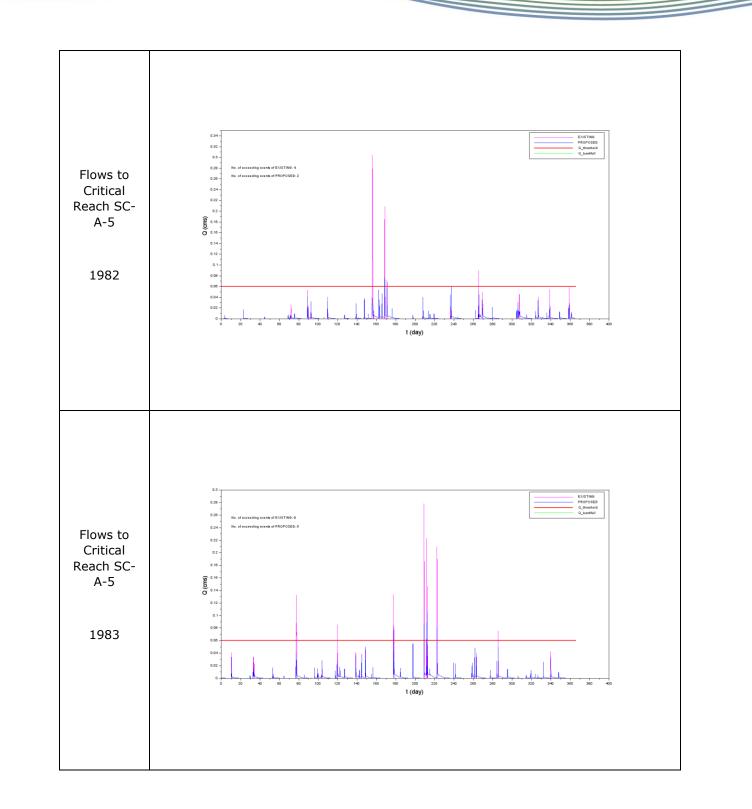

xxxviii

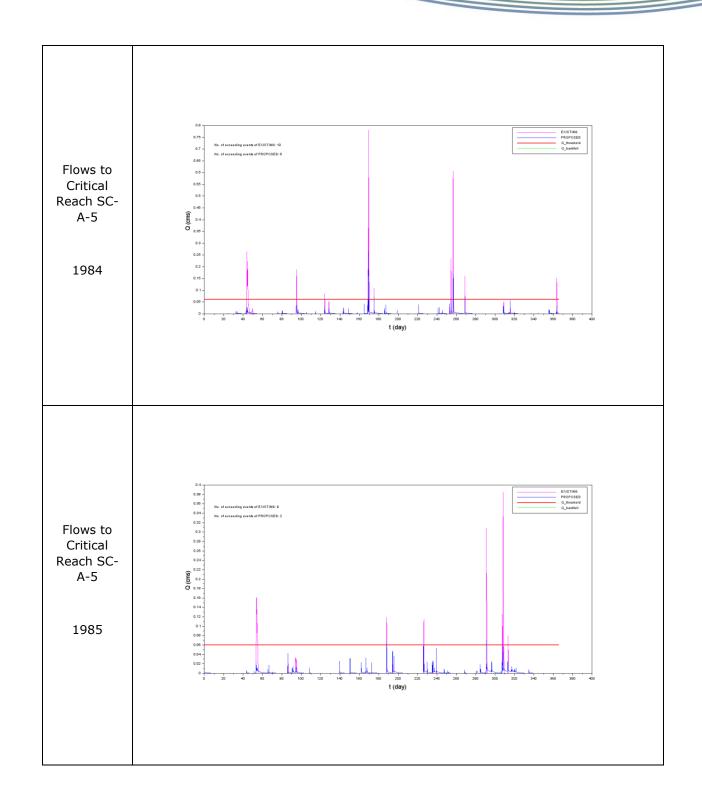


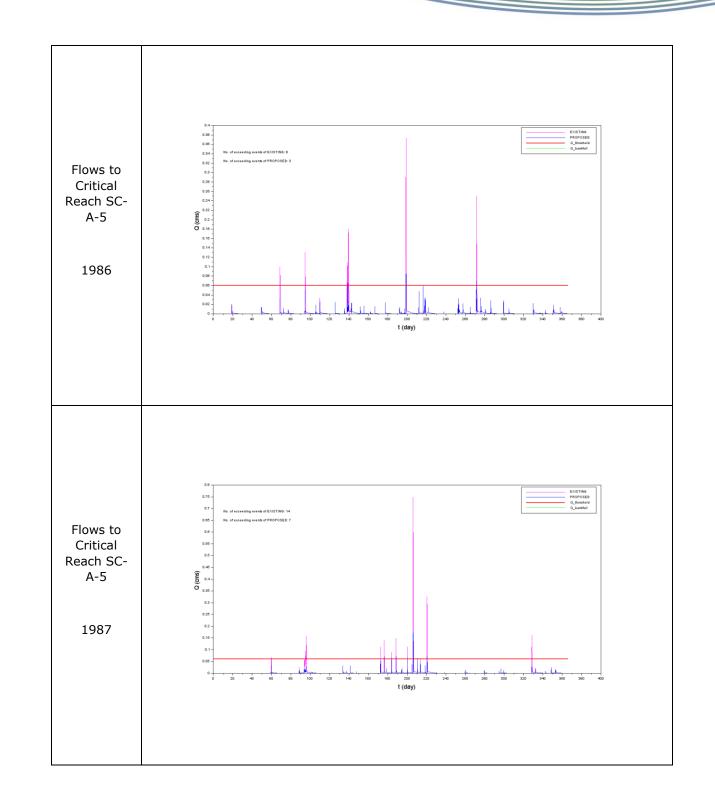



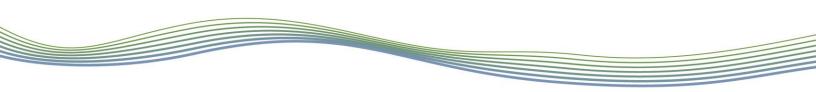



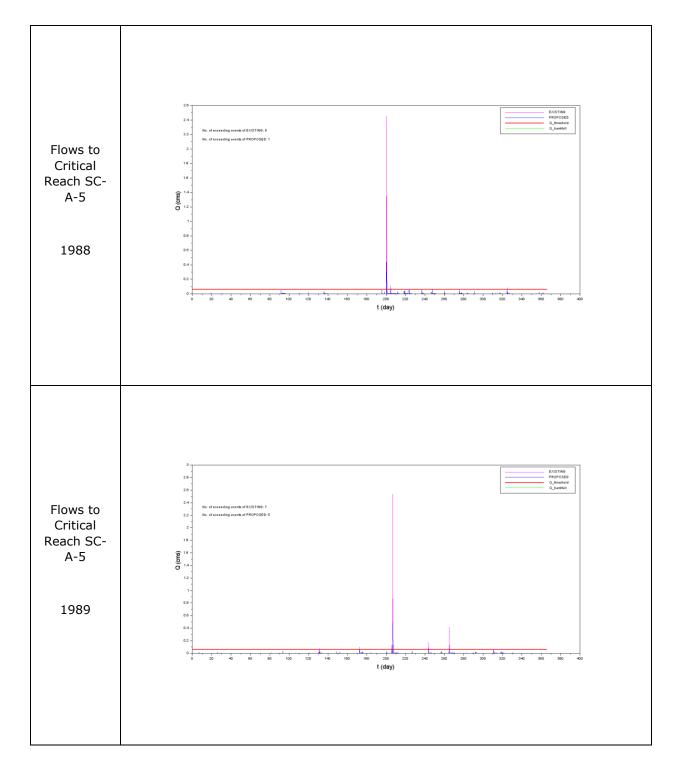



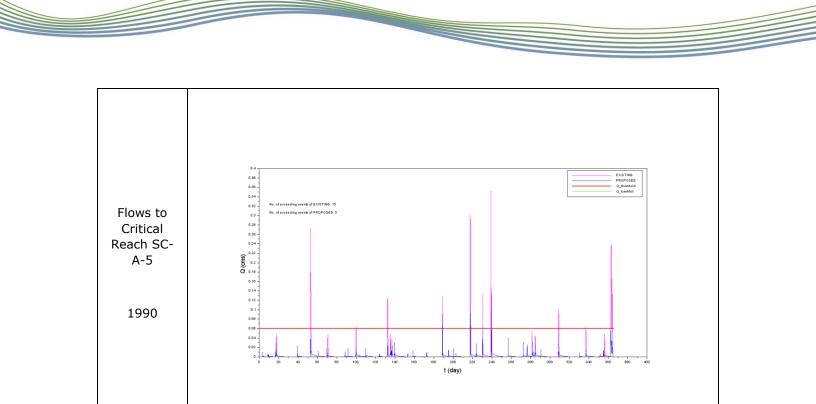














200 t (day) 220

180

140

0.3

0.28 0.26 0.24

0.22

0.18

0.16 0.14

0.12 0.1 0.08

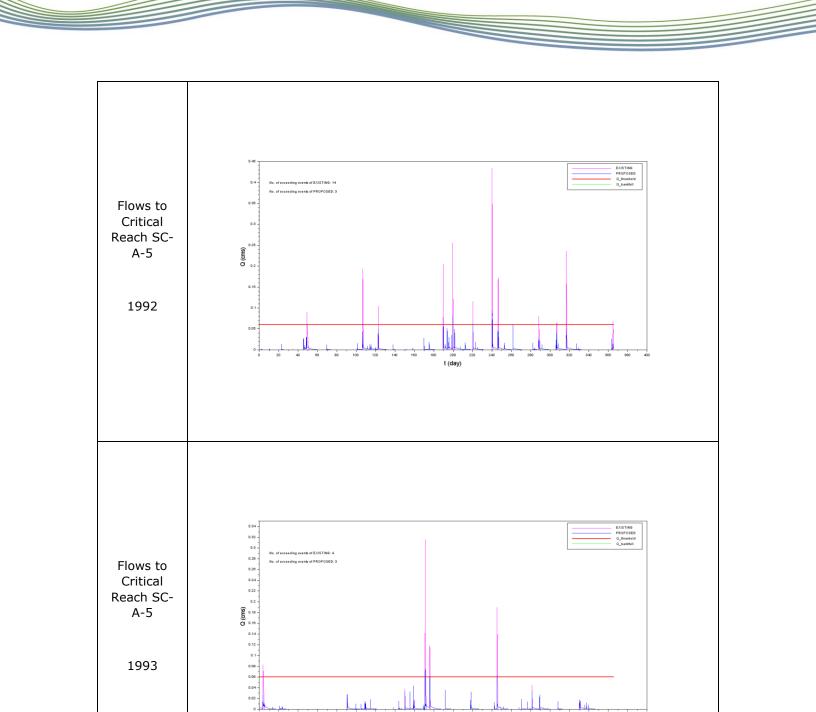
0.06 0.04 0.02

Flows to

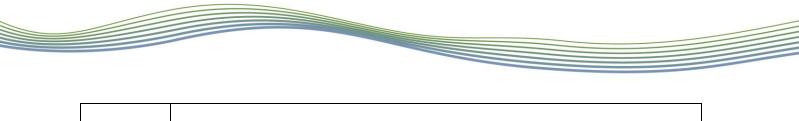
Critical

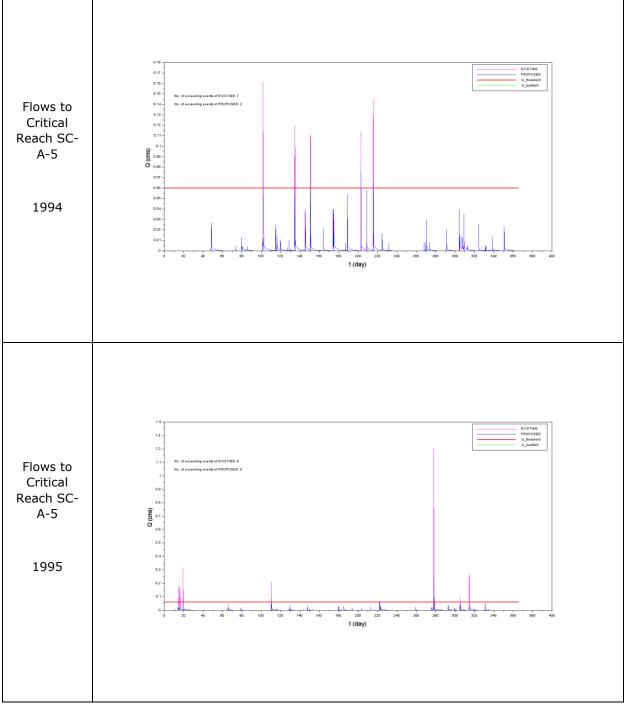
Reach SC-

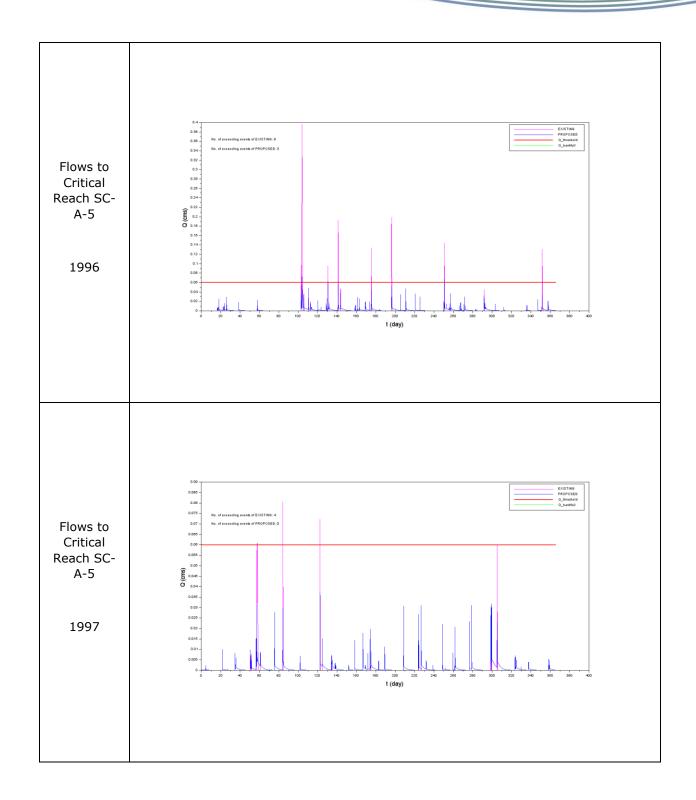
A-5

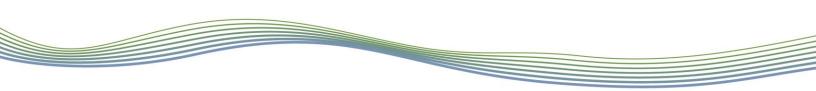

1991

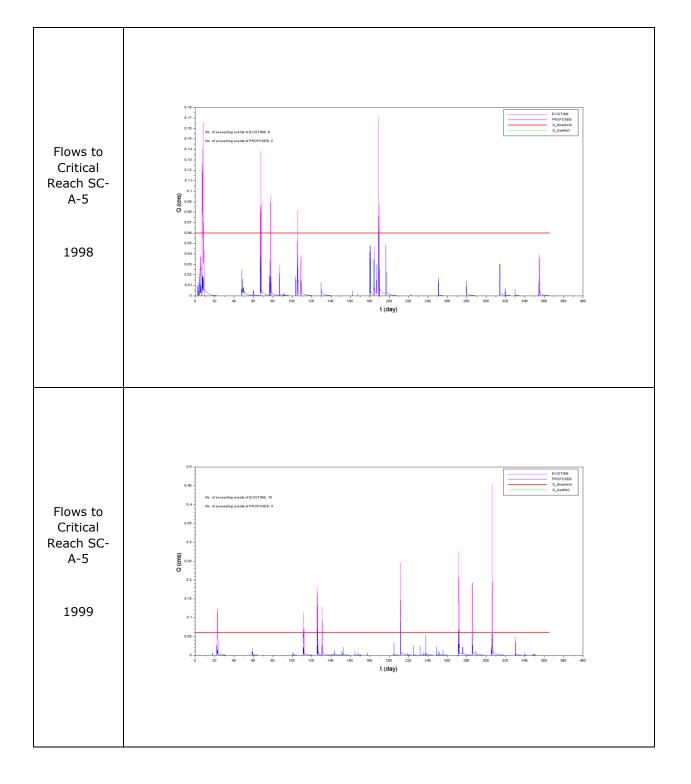
No. of exce

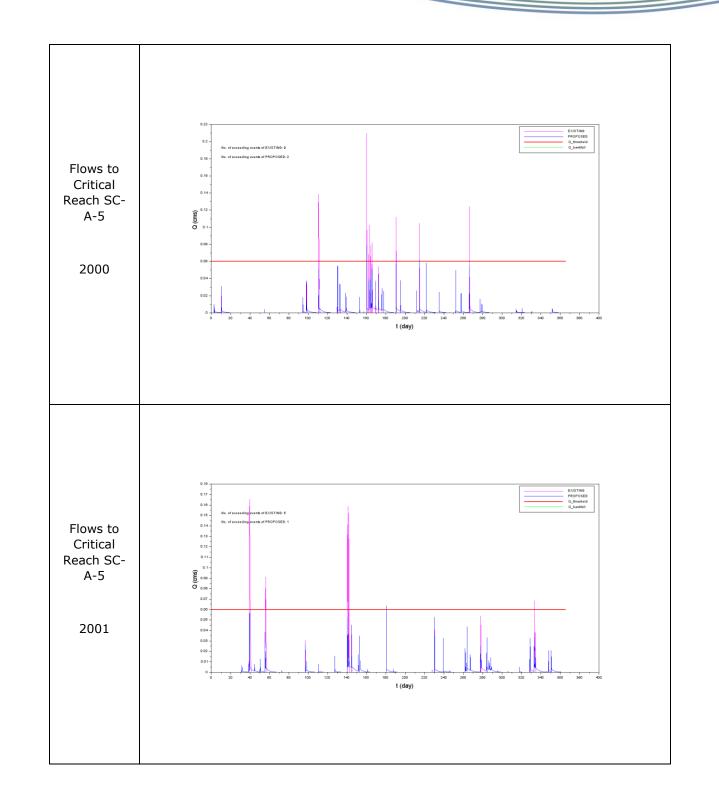

ling events of EXISTING: 3

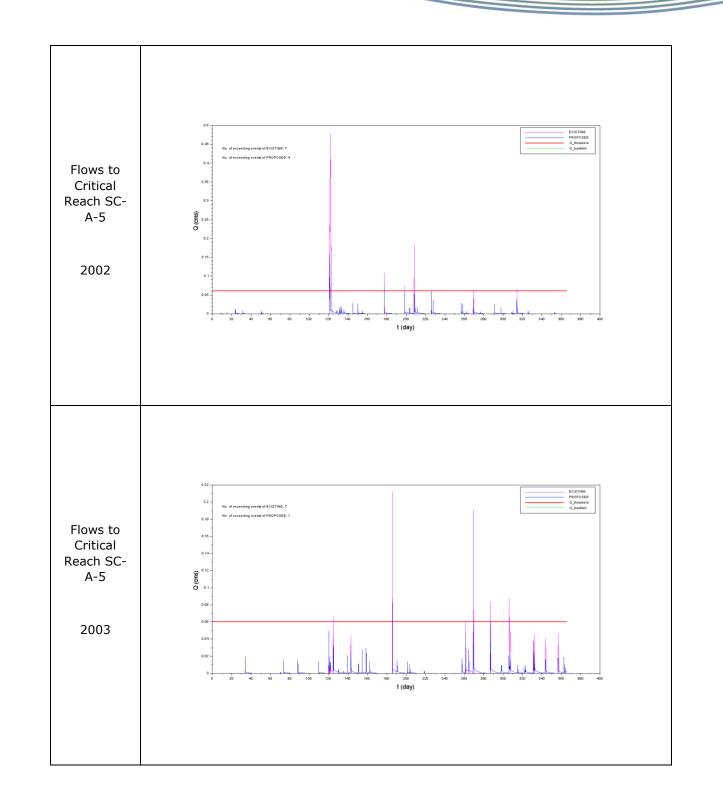

No. of exceeding events of PROPOSED: 2

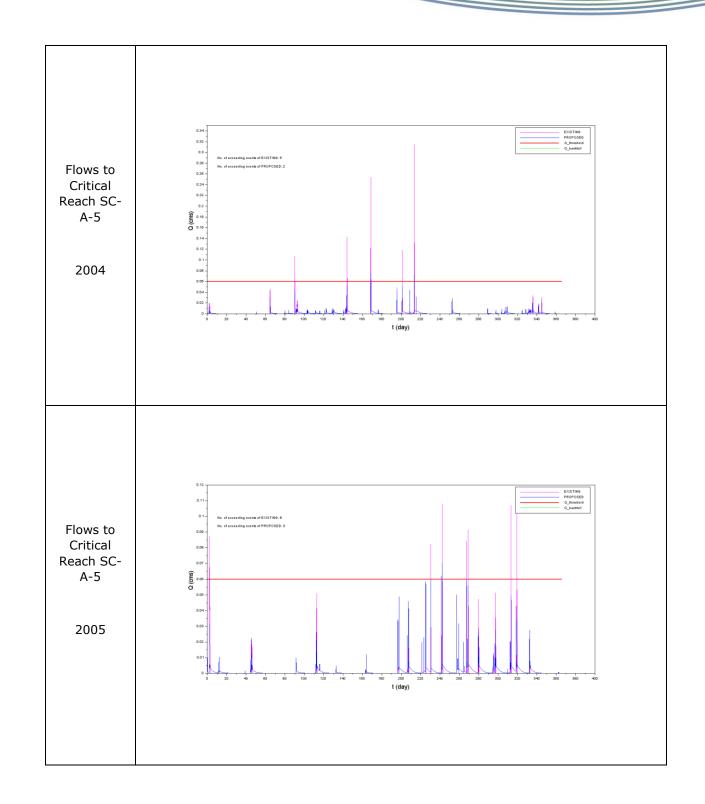

EXISTING PROPOSED Q_threshold Q_bankfull

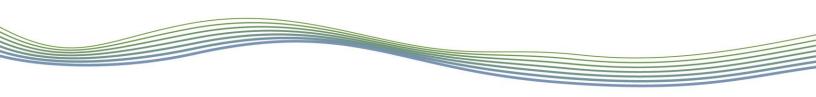


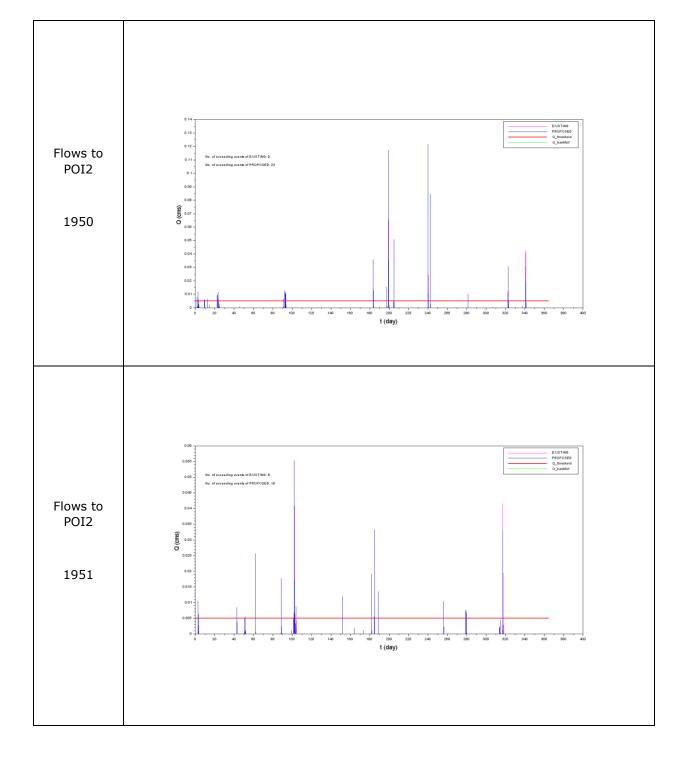


180 200 t (day)

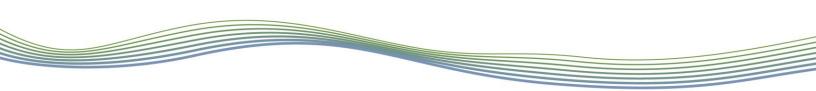


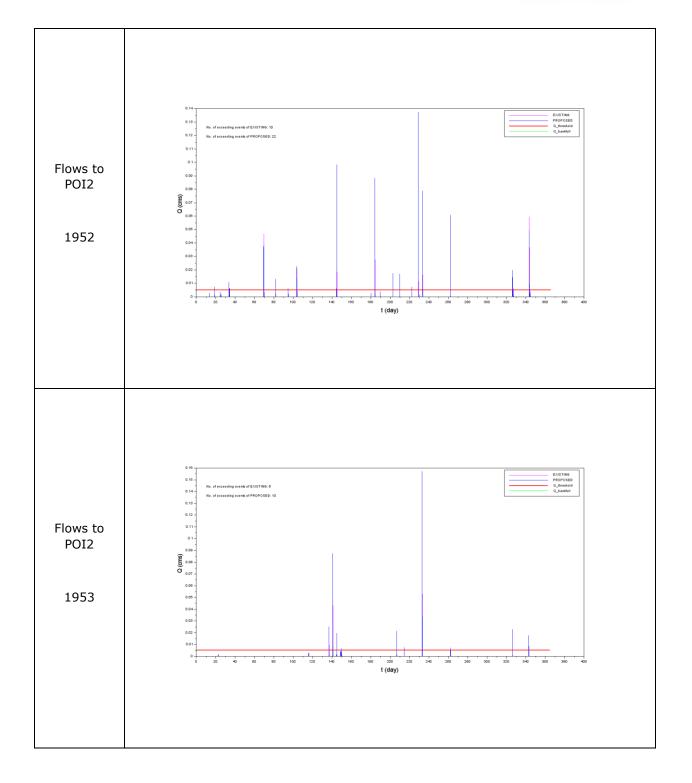



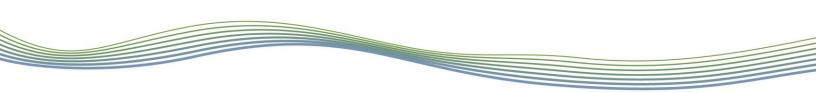



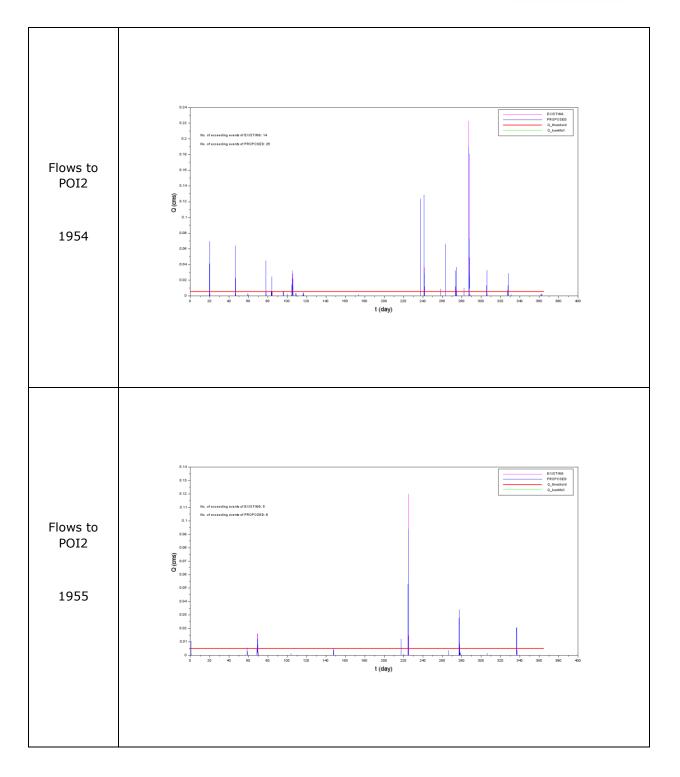



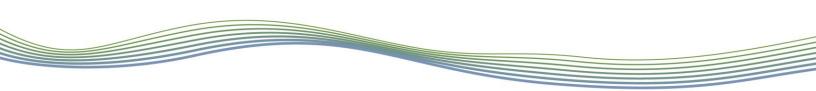



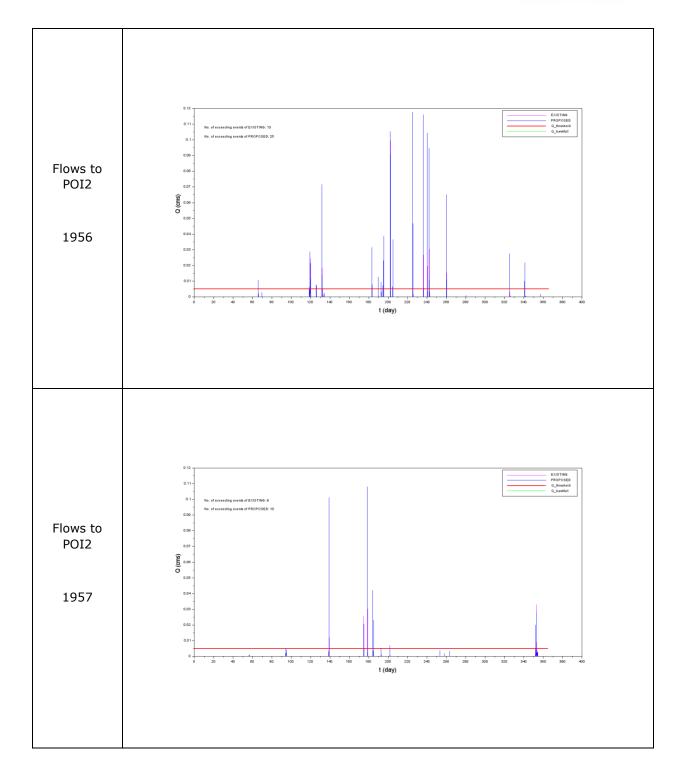



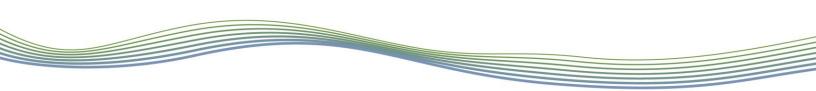



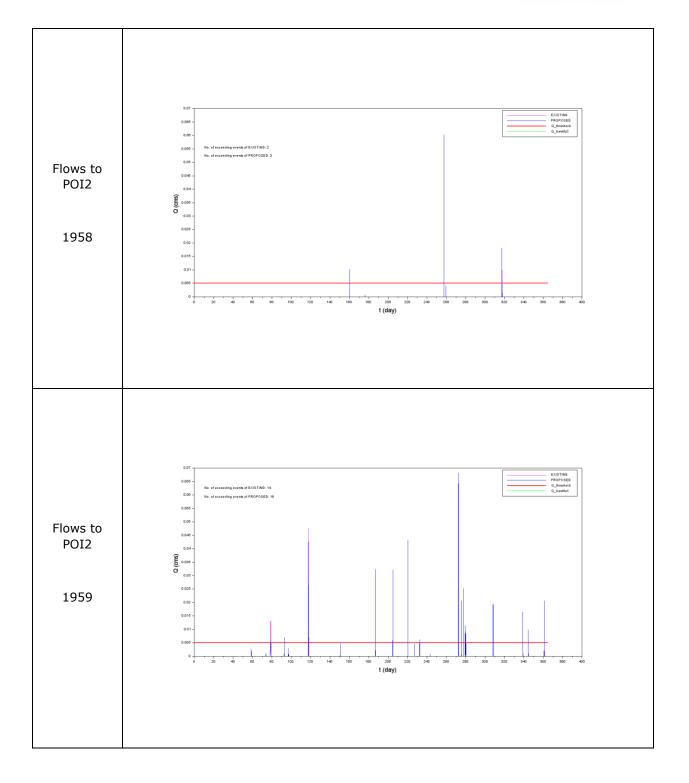



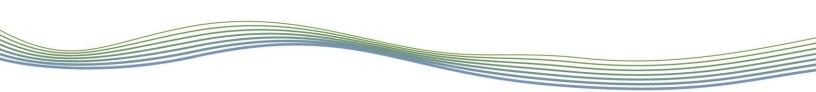



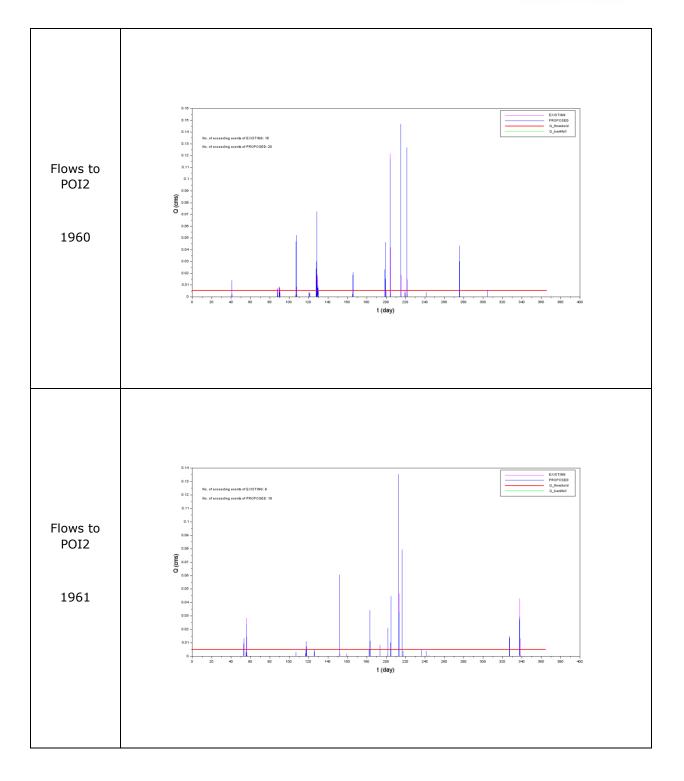



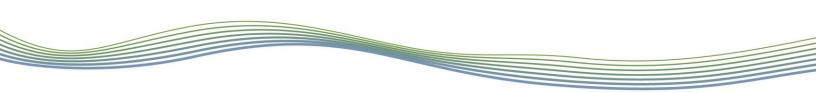



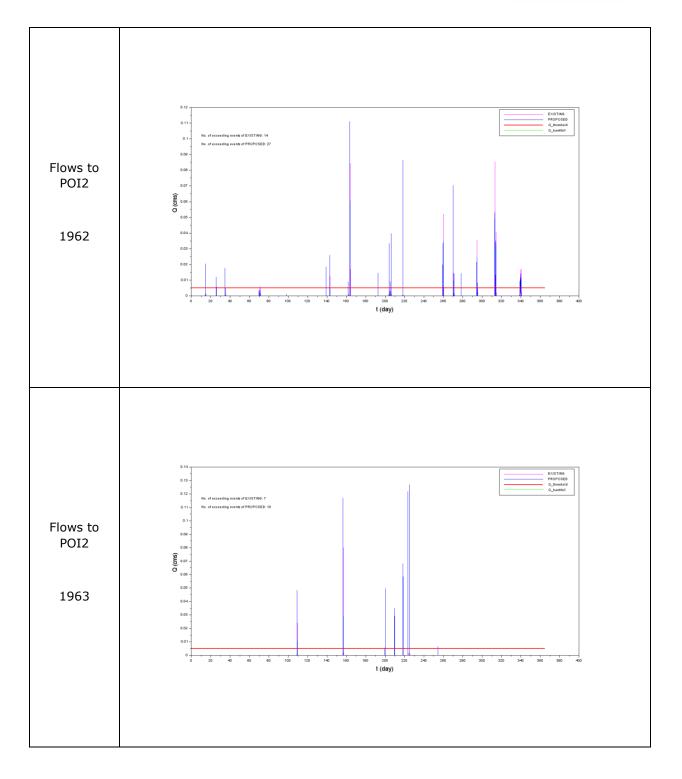



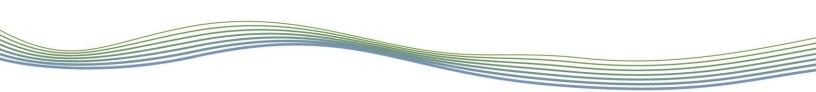



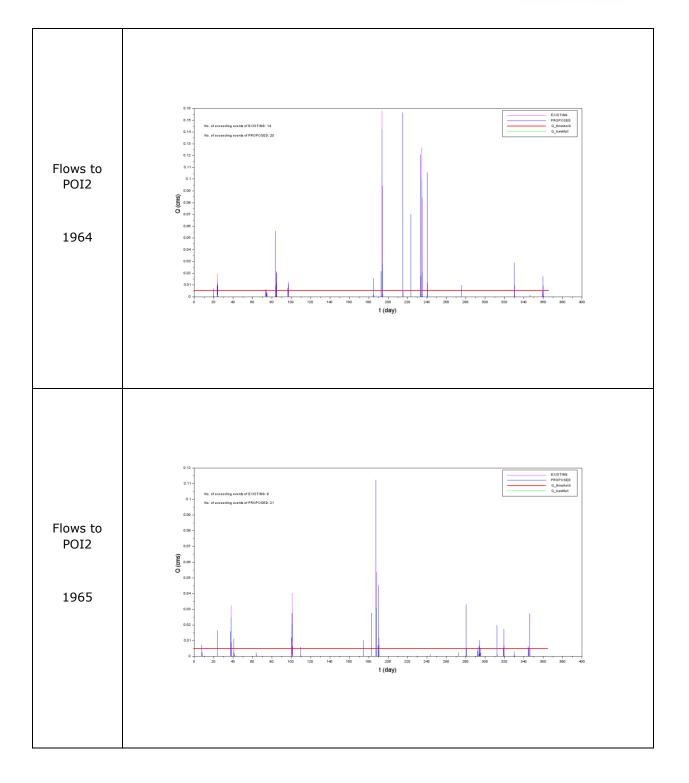



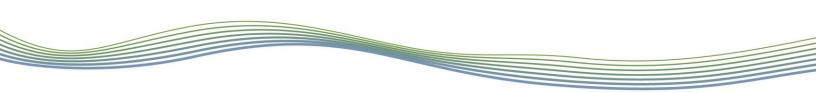



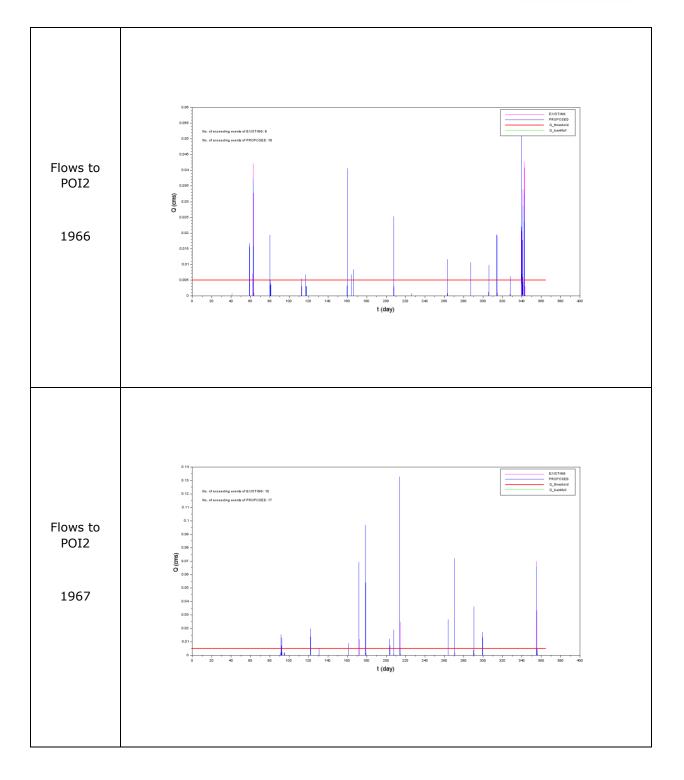



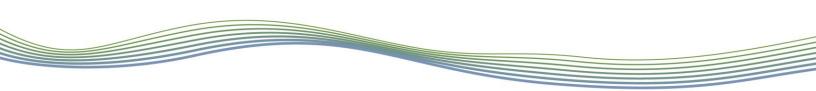



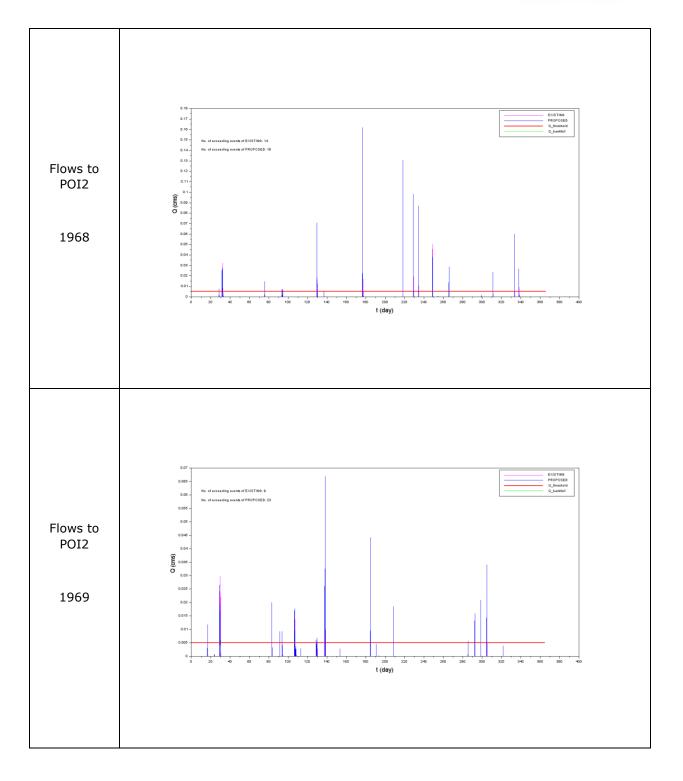



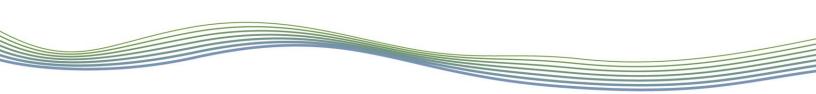



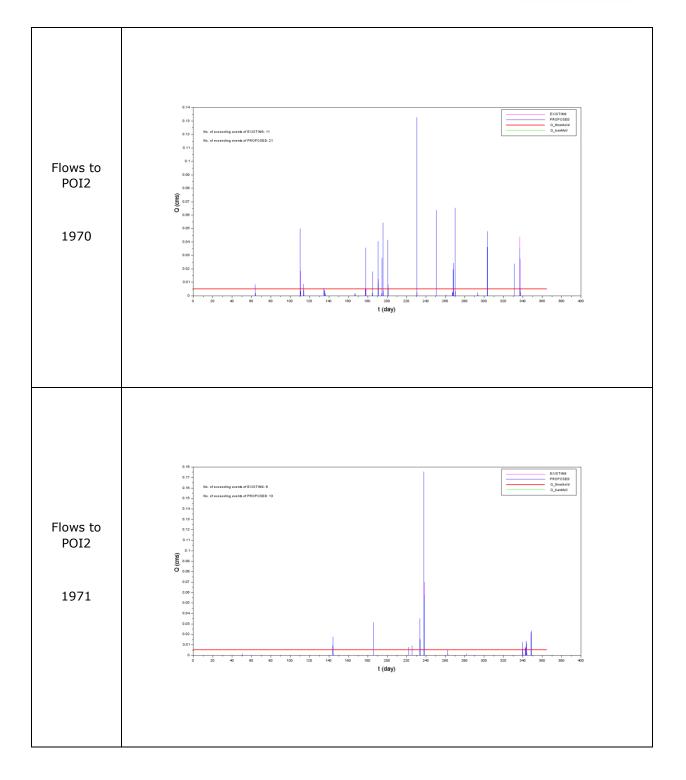



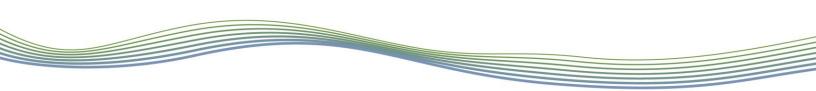



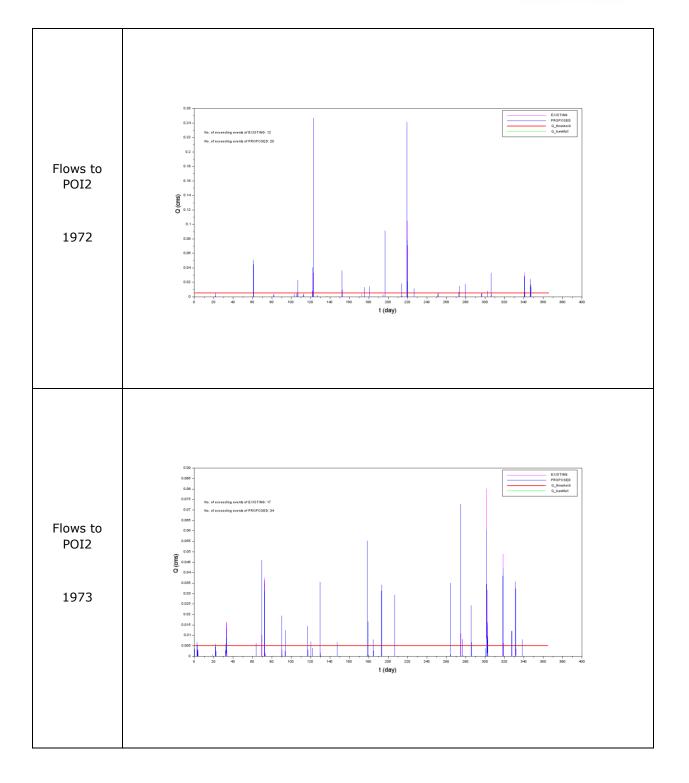



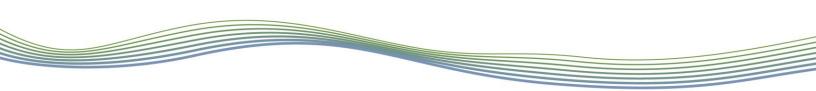



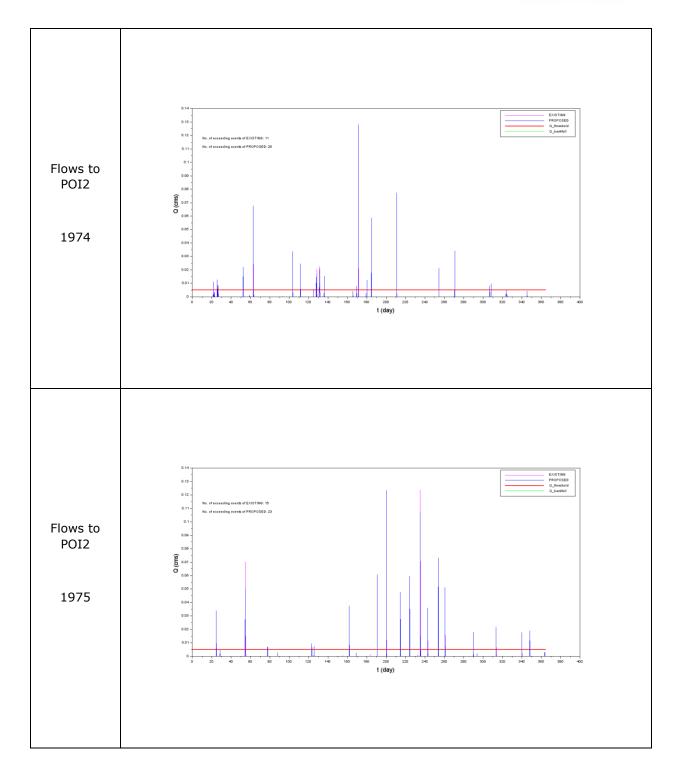



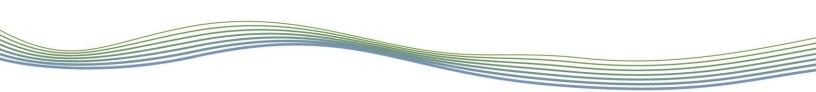



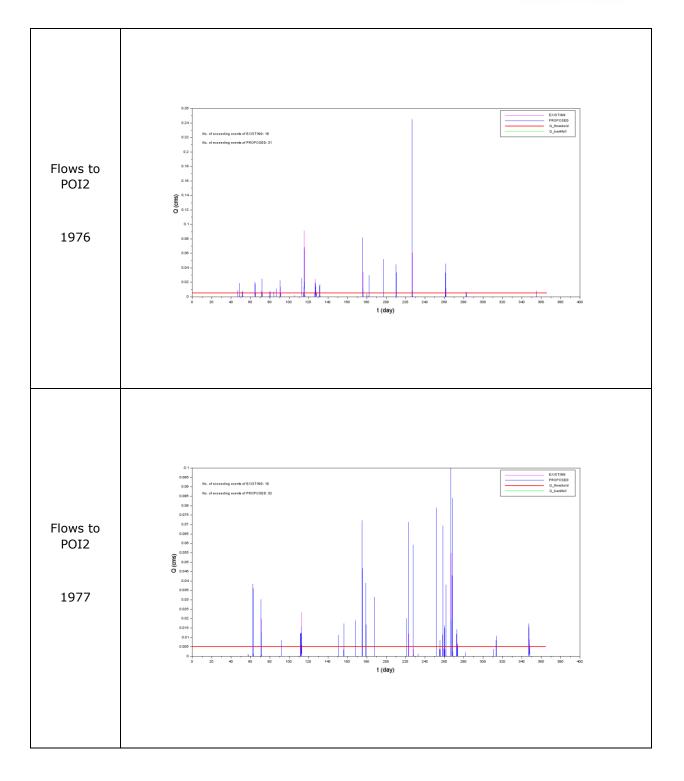



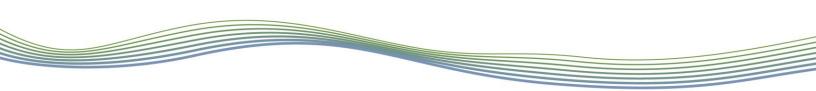



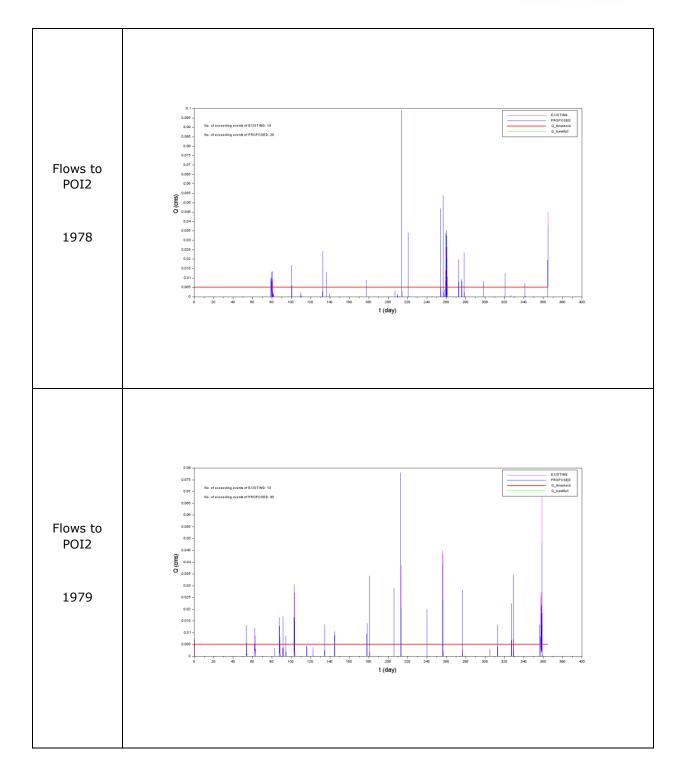



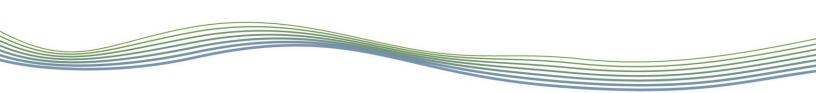



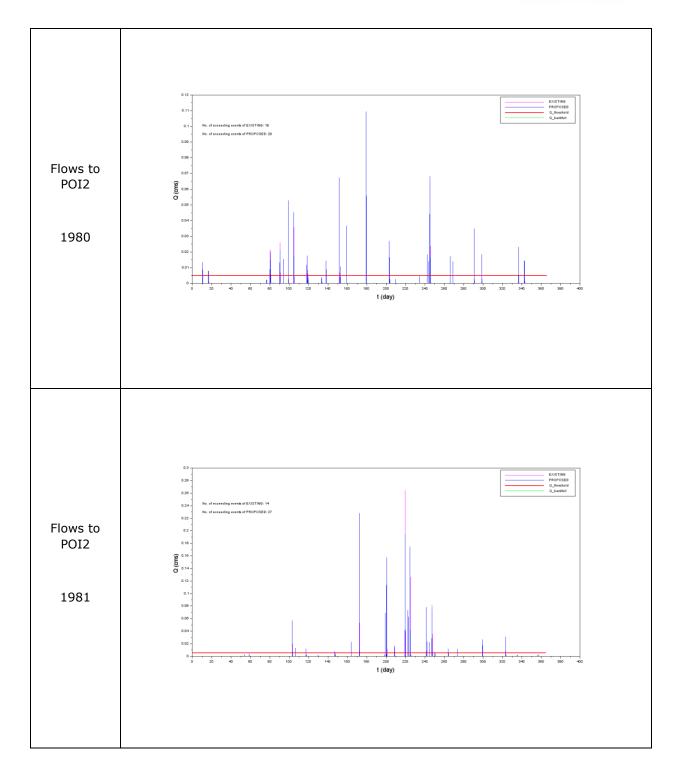



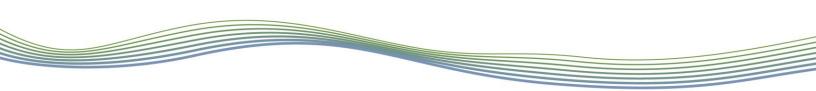



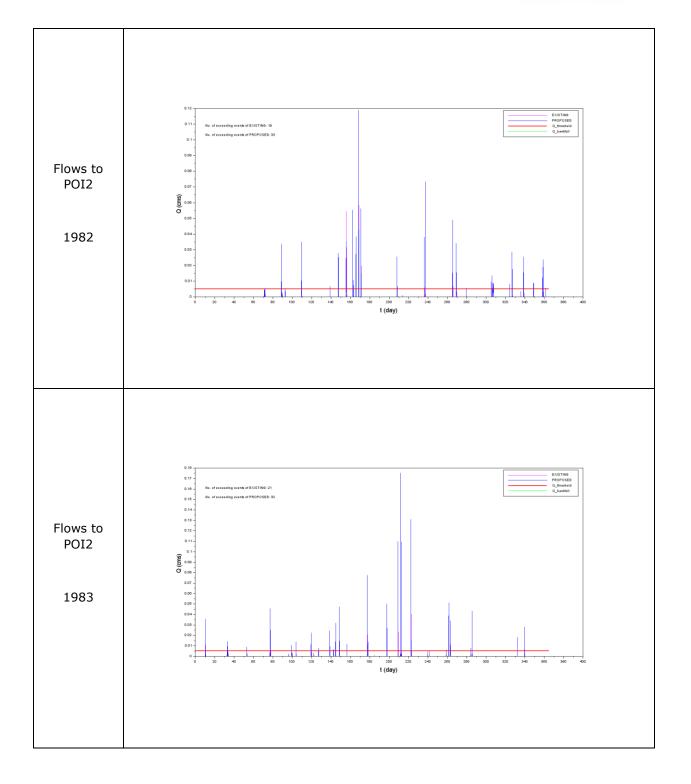



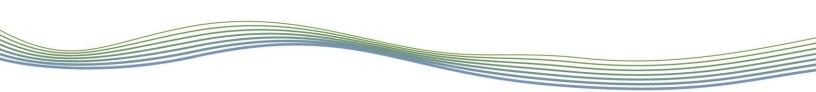



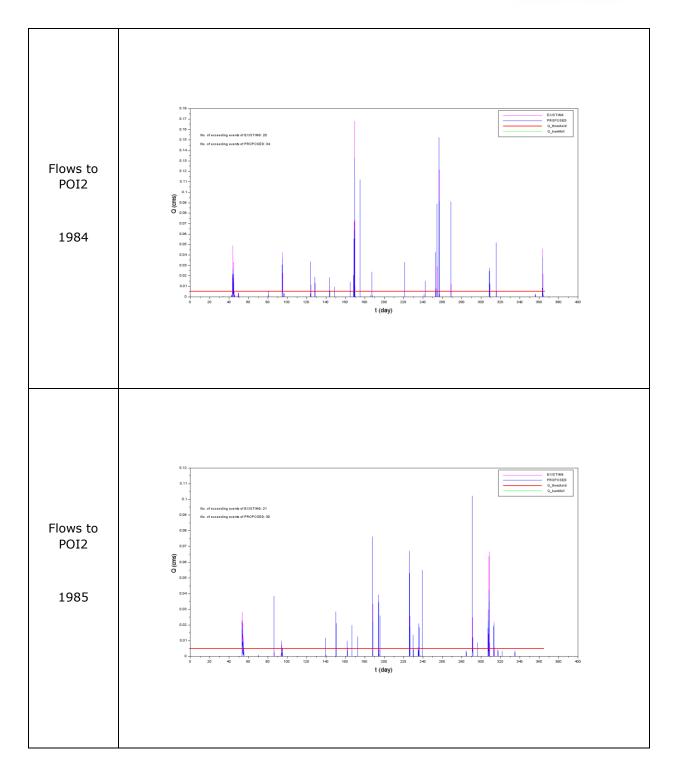



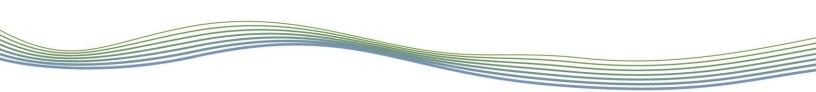



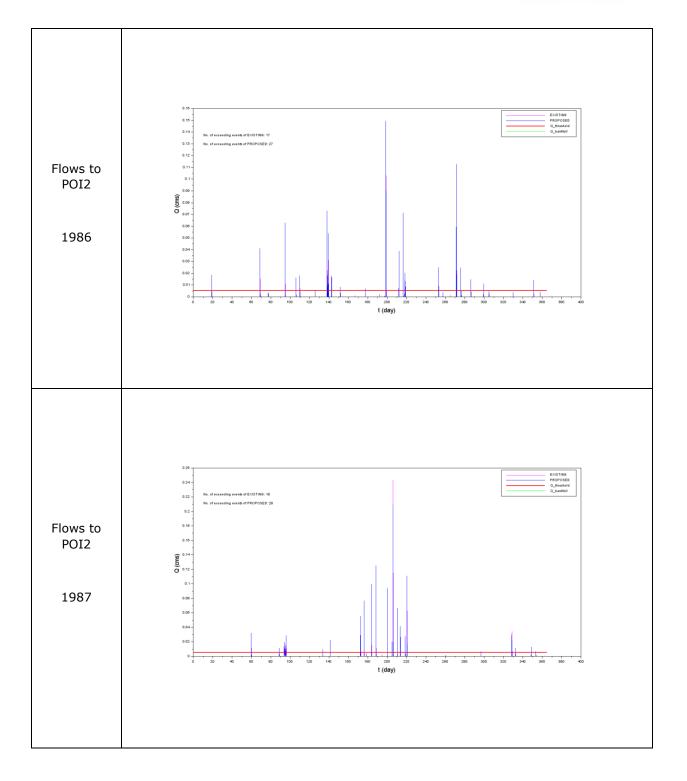



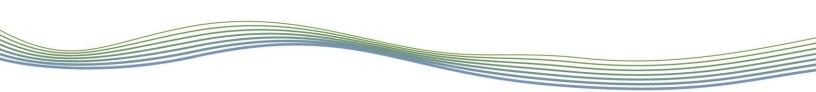



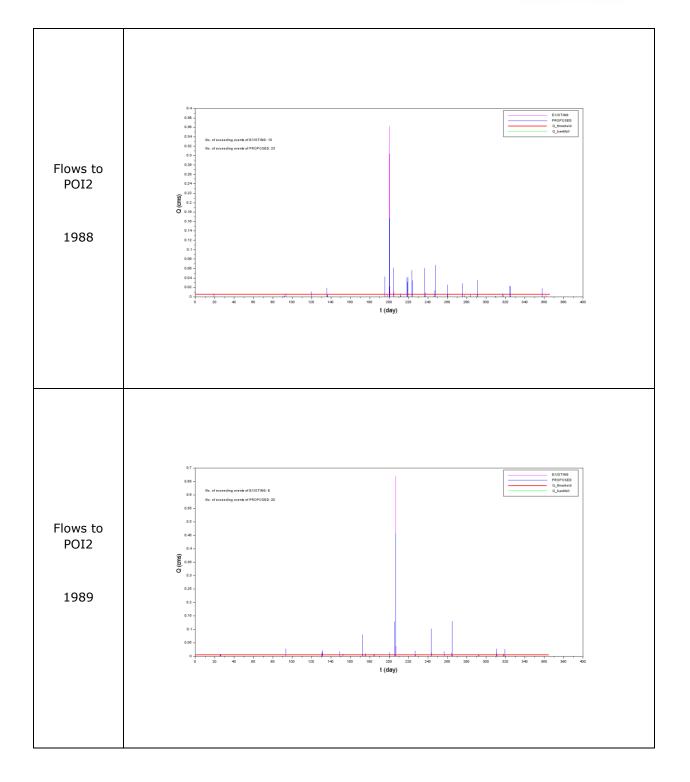



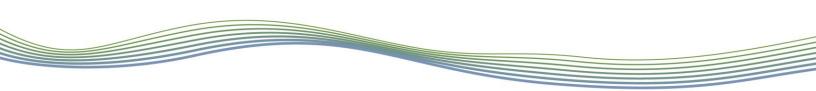



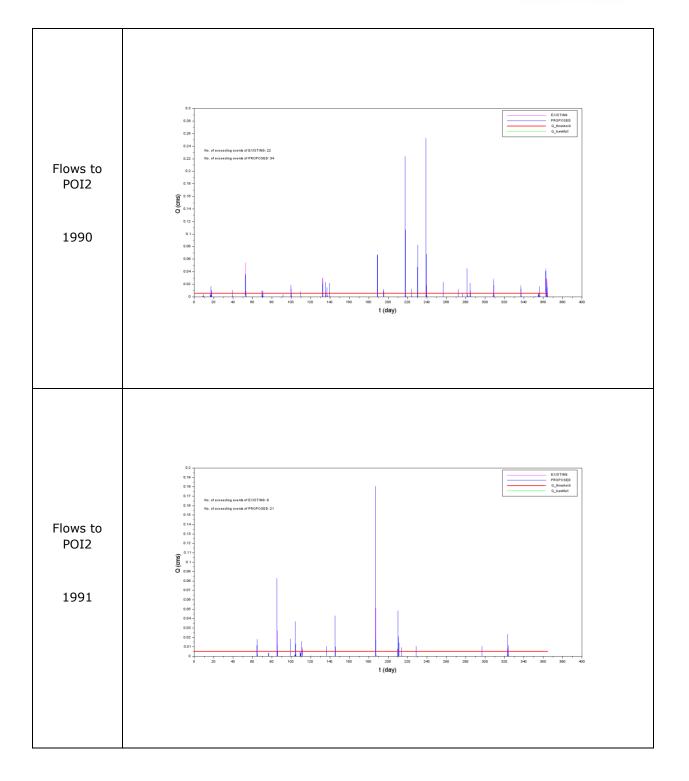



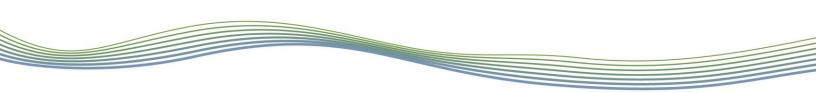



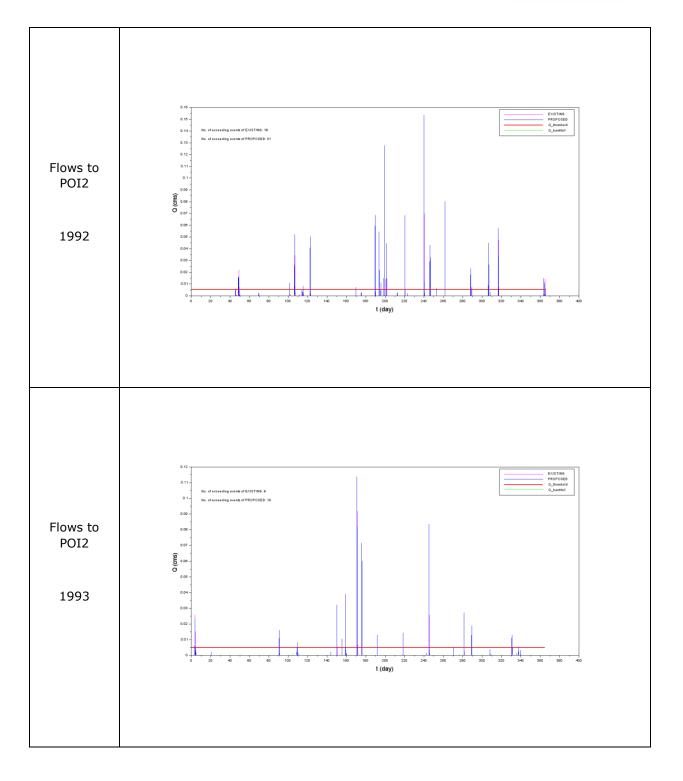



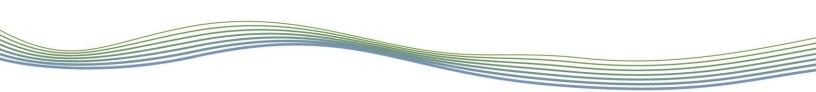



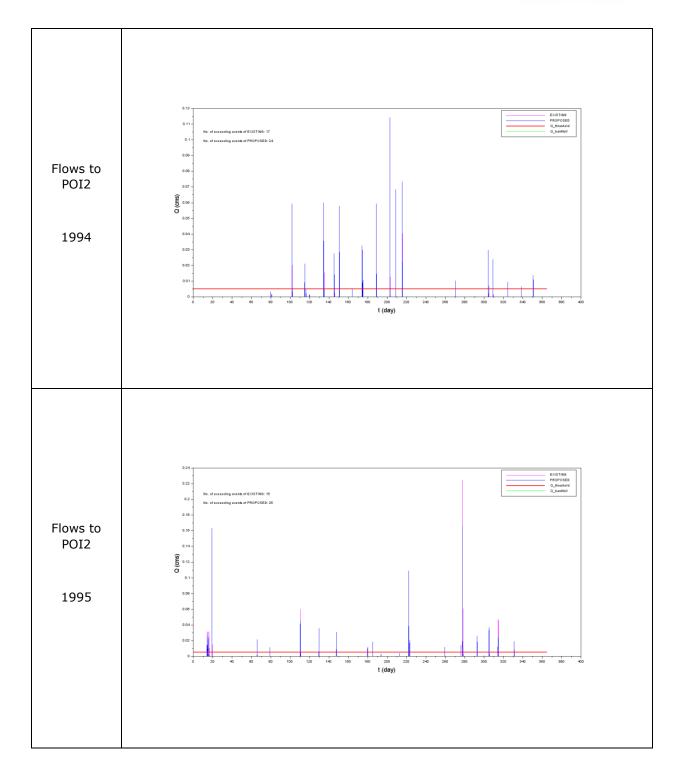



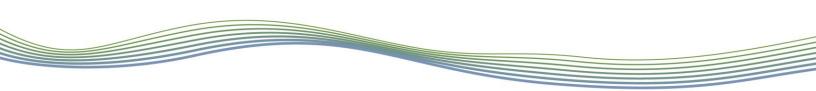



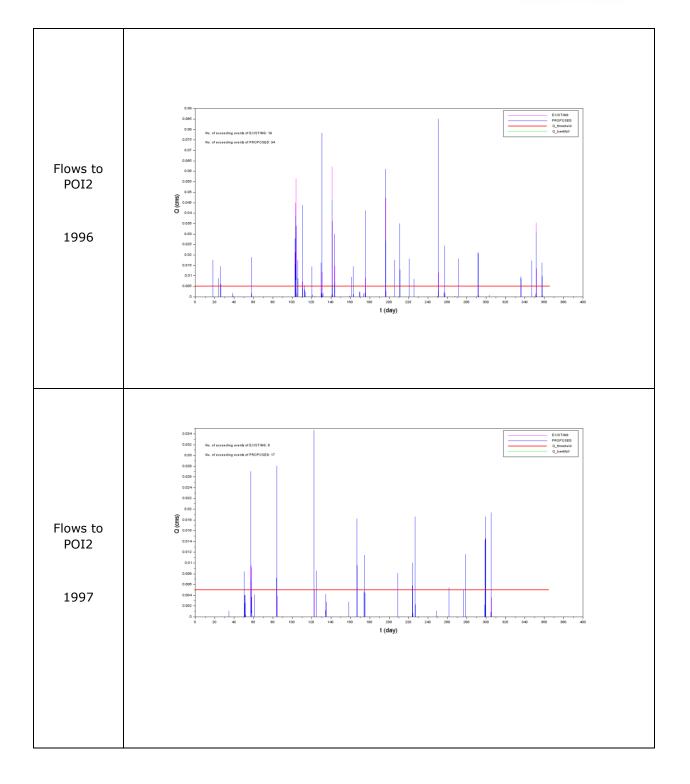


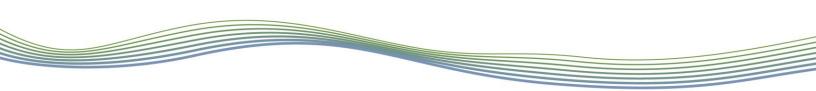





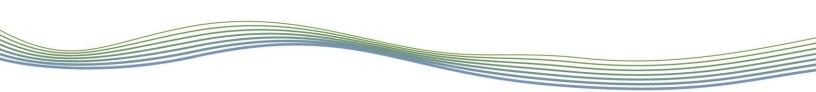



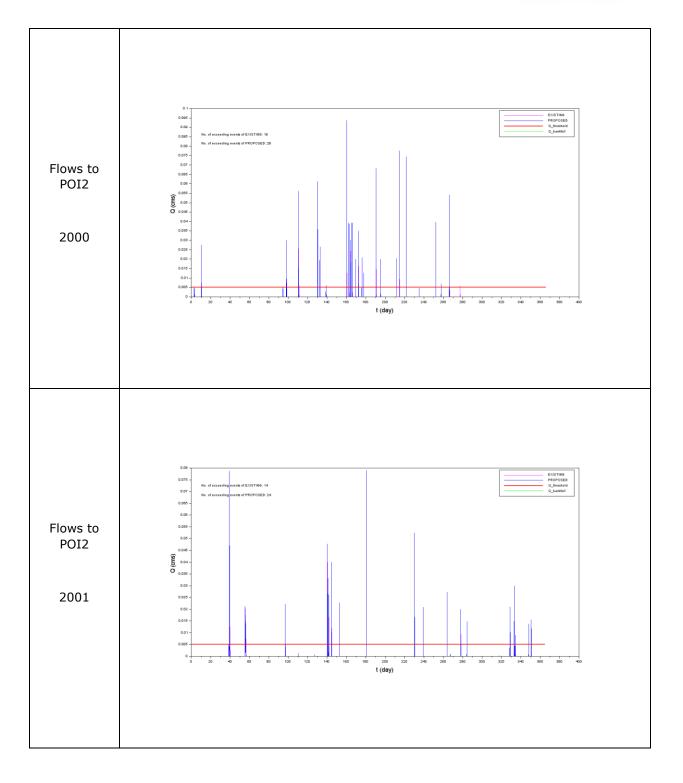


lxxviii



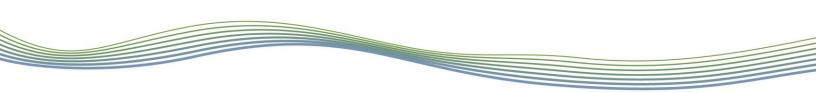


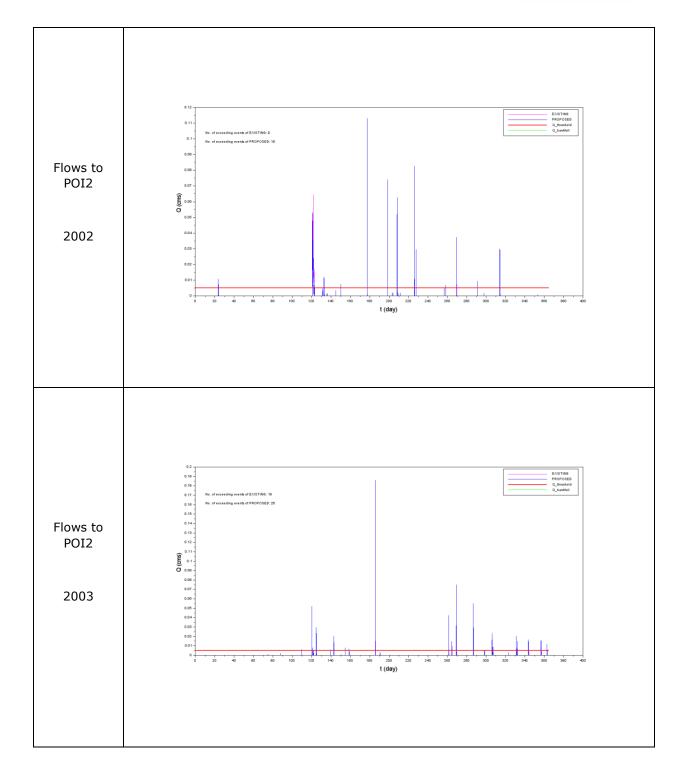



lxxix

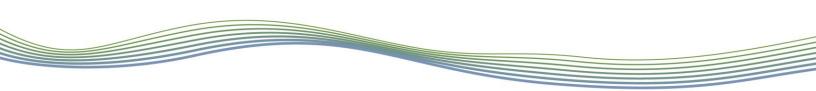


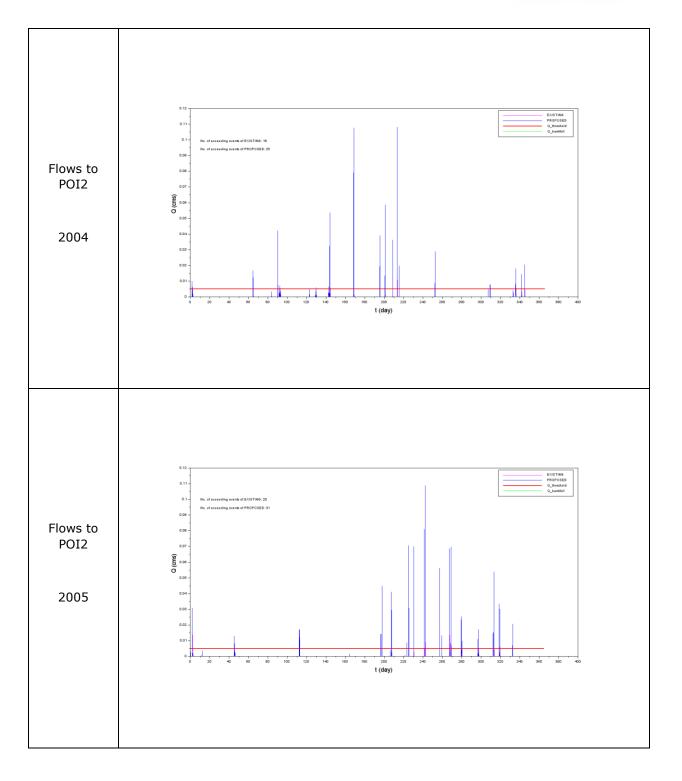






lxxxii





lxxxiii





lxxxiv